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Preface to the Second Edition

Revising a book for a new edition is always an arduous task. We wanted to make
sure that we retained all the good qualities of the first edition, published in 2009,
while fixing some of its shortcomings and adding additional material. We continue
to follow the principles outlined in the first edition:

• Use real code, not just pseudocode to describe algorithms
• Separate the algorithm from the problem being solved
• Introduce just enough mathematics
• Support mathematical analysis empirically

As we updated this second edition, we reduced the length of our text descriptions
and simplified the layout to make room for new algorithms and additional material.
We believe we continue to offer a Nutshell perspective on an important area of com‐
puter science that has significant impact on practical software systems.

Changes to the Second Edition
In updating this book for the second edition, we followed these principles:

Select New Algorithms
After the publication of the first edition, we often received comments such as
“Why was Merge Sort left out?” or “Why didn’t you cover Fast Fourier Trans‐
form (FFT)?” It was impossible to satisfy all of these requests, but we were able
to add the following algorithms:

• Fortune’s algorithm, to compute the Voronoi Diagram for a set of points
(“Voronoi Diagram” on page 268)
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• Merge Sort, for both internal memory data as well as external files
(“Merge Sort” on page 81)

• Multithreaded Quicksort (“Parallel Algorithms” on page 332)
• AVL Balanced Binary Tree implementation (“Solution” on page 121)
• A new Spatial Algorithms chapter (Chapter 10) contains R-Trees and

Quadtrees

In total, the book covers nearly 40 essential algorithms.

Streamline Presentation
To make room for the new material, we revised nearly every aspect of the first
edition. We simplified the template used to describe each algorithm and
reduced the accompanying descriptions.

Add Python Implementations
Rather than reimplement existing algorithms in Python, we intentionally used
Python to implement most of the new algorithms added.

Manage Code Resources
The code for the first edition was made available as a ZIP file. We have since
transitioned to a GitHub repository. Over the years we improved the quality of
the code and its documentation. We have incorporated a number of blog
entries that were written after the publication of the first edition. There are
over 500 unit test cases and we use code coverage tools to ensure coverage of
99% of our Java code. In total, the code repository consists of over 110 KLOC.

Audience
We intend this book to be your primary reference when seeking practical informa‐
tion on how to implement or use an algorithm. We cover a range of existing algo‐
rithms for solving a large number of problems and adhere to the following
principles:

• When describing each algorithm, we use a stylized template to properly frame
each discussion and explain the essential points of each algorithm

• We use a variety of languages to implement each algorithm (including C, C++,
Java, and Python). In doing so, we make concrete the discussion of algorithms
and speak using languages you are already familiar with

• We describe the expected performance of each algorithm and empirically pro‐
vide evidence to support these claims

We intend this book to be most useful to software practitioners, programmers, and
designers. To meet your objectives, you need access to a quality resource that
explains real solutions to practical algorithms you need to solve real problems. You
already know how to program in a variety of programming languages. You know
about the essential computer science data structures, such as arrays, linked lists,
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stacks, queues, hash tables, binary trees, and undirected and directed graphs. You
don’t need to implement these data structures, since they are typically provided by
code libraries.

We expect you will use this book to learn about tried and tested solutions to solve
problems efficiently. You will learn some advanced data structures and novel ways
to apply standard data structures to improve the efficiency of algorithms. Your
problem-solving abilities will improve when you see the key decision for each algo‐
rithm that make for efficient solutions.

Conventions Used in This Book
The following typographical conventions are used in this book:

Code

All code examples appear in this typeface.

This code is replicated directly from the code repository and

reflects real code. All code listings are “pretty-printed” to

highlight the appropriate syntax of the programming language.

Italic
Indicates key terms used to describe algorithms and data structures. Also used
when referring to variables within a pseudocode description of an example.

Constant width
Indicates the name of actual software elements within an implementation, such
as a Java class, the name of an array within a C implementation, and constants
such as true or false.

We cite numerous books, articles, and websites throughout the book. These cita‐
tions appear in text using parentheses, such as (Cormen et al., 2009), and each chap‐
ter closes with a listing of references used within that chapter. When the reference
citation immediately follows the name of the author in the text, we do not duplicate
the name in the reference. Thus, we refer to the Art of Computer Programming
books by Donald Knuth (1998) by just including the year in parentheses.

All URLs used in the book were verified as of January 2016, and we tried to use only
URLs that should be around for some time. We include small URLs, such as http://
www.oreilly.com, directly within the text; otherwise, they appear in footnotes and
within the references at the end of a chapter.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/heineman/algorithms-nutshell-2ed.
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This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You do
not need to contact us for permission unless you’re reproducing a significant por‐
tion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM of
examples from O’Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporat‐
ing a significant amount of example code from this book into your product’s docu‐
mentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: "Algorithms in a Nutshell, Second
Edition by George T. Heineman, Gary Pollice, and Stanley Selkow. Copyright 2016
George Heineman, Gary Pollice and Stanley Selkow, 978-1-4919-4892-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital
library that delivers expert content in both book
and video form from the world’s leading authors
in technology and business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for
research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For
more information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
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800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/algorithms_nutshell_2e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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1
Thinking in Algorithms

Algorithms matter! Knowing which algorithm to apply under which set of circum‐
stances can make a big difference in the software you produce. Let this book be your
guide to learning about a number of important algorithm domains, such as sorting
and searching. We will introduce a number of general approaches used by algo‐
rithms to solve problems, such as the Divide and Conquer or Greedy strategy. You
will be able to apply this knowledge to improve the efficiency of your own software.

Data structures have been tightly tied to algorithms since the dawn of computing. In
this book, you will learn the fundamental data structures used to properly represent
information for efficient processing.

What do you need to do when choosing an algorithm? We’ll explore that in the fol‐
lowing sections.

Understand the Problem
The first step in designing an algorithm is to understand the problem you want to
solve. Let’s start with a sample problem from the field of computational geometry.
Given a set of points, P, in a two-dimensional plane, such as shown in Figure 1-1,
picture a rubberband that has been stretched around the points and released. The
resulting shape is known as the convex hull (i.e., the smallest convex shape that fully
encloses all points in P). Your task is to write an algorithm to compute the convex
hull from a set of two-dimensional points.

Given a convex hull for P, any line segment drawn between any two points in P lies
totally within the hull. Let’s assume we order the points in the hull clockwise. Thus,
the hull is formed by a clockwise ordering of h points L0, L1, … ,Lh-1 as shown in
Figure 1-2. Each sequence of three hull points Li, Li+1, Li+2 creates a right turn.
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Figure 1-1. Sample set of 15 points in plane

Figure 1-2. Computed convex hull for points

With just this information, you can probably draw the convex hull for any set of
points, but could you come up with an algorithm (i.e., a step-by-step sequence of
instructions that will efficiently compute the convex hull for any set of points)?

What we find interesting about the convex hull problem is that it doesn’t seem to be
easily classified into existing algorithmic domains. There doesn’t seem to be any lin‐
ear sorting of the points from left to right, although the points are ordered in clock‐
wise fashion around the hull. Similarly, there is no obvious search being performed,
although you can identify a line segment on the hull because the remaining n – 2
points are “to the right” of that line segment in the plane.

2 | Chapter 1: Thinking in Algorithms



Naïve Solution
Clearly a convex hull exists for any collection of three or more points. But how do
you construct one? Consider the following idea. Select any three points from the
original collection and form a triangle. If any of the remaining n – 3 points are con‐
tained within this triangle, then they cannot be part of the convex hull. We’ll
describe the general process using pseudocode, and you will find similar descrip‐
tions for each of the algorithms in the book.

Slow Hull Summary
Best, Average, Worst: O(n4)

slowHull (P)
  foreach p0 in P do
    foreach p1 in {P-p0} do

      foreach p2 in {P-p0-p1} do 
        foreach p3 in {P-p0-p1-p2} do
          if p3 is contained within Triangle(p0,p1,p2) then

            mark p3 as internal 

  create array A with all non-internal points in P
  determine leftmost point, left, in A

  sort A by angle formed with vertical line through left 
  return A

Points p0, p1, p2 form a triangle.

Points not marked as internal are on convex hull.

These angles (in degrees) range from –90 to 90.

In the next chapter, we will explain the mathematical analysis that shows why this
approach is considered to be inefficient. This pseudocode summary explains the
steps that produce a convex hull for each input set; in particular, it created the con‐
vex hull in Figure 1-2. Is this the best we can do?

Intelligent Approaches
The numerous algorithms in this book are the results of striving for more efficient
solutions to existing code. We identify common themes in this book to help you
solve your problems. There are many different ways to compute a convex hull. In
sketching these approaches, we give you a sample of the material in the chapters
that follow.

Thinking
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Greedy
Here’s a way to construct the convex hull one point at a time:

1. Remove from P its lowest point, low, which must be part of the hull.
2. Sort the remaining n – 1 points in descending order by the angle formed in rela‐

tion to a vertical line through low. These angles range from 90 degrees for
points to the left of the line down to –90 degrees for points to the right. pn–2 is
the rightmost point and p0 is the leftmost point. Figure 1-3 shows the vertical
line and the angles to it from each point as light lines.

3. Start with a partial convex hull formed from three points in this order {pn–2,
low, p0}. Try to extend the hull by considering, in order, each of the points p1 to
pn–2. If the last three points of the partial hull ever turn left, the hull contains an
incorrect point that must be removed.

4. Once all points are considered, the partial hull completes. See Figure 1-3.

Figure 1-3. Hull formed using a Greedy approach

Divide and Conquer
We can divide the problem in half if we first sort all points, P, left to right by x coor‐
dinate (breaking ties by considering their y coordinate). From this sorted collection,
we first compute the upper partial convex hull by considering points in order left to
right from p0 to pn–1 in the clockwise direction. Then the lower partial convex hull is
constructed by processing the same points in order right to left from pn–1 to p0 again
in the clockwise direction. Convex Hull Scan (described in Chapter 9) computes

4 | Chapter 1: Thinking in Algorithms



these partial hulls (shown in Figure 1-4) and merges them together to produce the
final convex hull.

Figure 1-4. Hull formed by merging upper and lower partial hulls

Parallel
If you have a number of processors, partition the initial points by x coordinate and
have each processor compute the convex hull for its subset of points. Once these are
completed, the final hull is stitched together by the repeated merging of neighboring
partial solutions. A parallel approach divides subproblems among a number of pro‐
cessors to speed up the overall solution.

Figure 1-5 shows this approach on three processors. Two neighboring hulls are
stitched together by adding two tangent lines—one on the top and one on the bot‐
tom—and then eliminating the line segments contained within the quadrilateral
formed by these two lines.

Approximation
Even with these improvements, there is still fixed lower bound performance for
computing the convex hull that cannot be beaten. However, instead of computing
the exact answer, perhaps you would be satisfied with an approximate answer that
can be computed quickly and whose error can be accurately determined.

The Bentley–Faust–Preparata algorithm constructs an approximate convex hull by
partitioning the points into vertical strips (Bentley et al., 1982). Within each strip,
the maximum and minimum points (based on y coordinate) are identified (they are
drawn in Figure 1-6 with squares around the points). Together with the leftmost
point and the rightmost point in P, these extreme points are stitched together to
form the approximate convex hull. In doing so, it may happen that a point falls out‐
side the actual convex hull, as shown for point p1 in Figure 1-6.
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Figure 1-5. Hull formed by parallel constructions and stitching

Figure 1-6. Hull formed by approximate computation
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Generalization
It is often possible to solve a more general problem whose solution can be readily
converted to solve your specific problem. The Voronoi diagram (Preparata and Sha‐
mos, 1993) is a geometric structure that divides a set of points in a plane into
regions, each one of which is anchored by one of the original points in the input set
P. Each region Ri is the set of points (x, y) in the plane closer to the anchor point, pi,
than any other point in P. Once the Voronoi diagram is computed, these regions
can be visualized as shown in Figure 1-7. The gray regions are semi-infinite and you
can observe that these match directly to the points on the convex hull. This observa‐
tion leads to the following algorithm:

1. Compute the Voronoi diagram for P.
2. Initialize the hull with the lowest point, low, in P and start at its associated

region.
3. In clockwise fashion, visit the neighboring region that shares an infinitely long

side and add that region’s anchor point to the hull.
4. Continue adding points until the original region is encountered.

Figure 1-7. Hull computed from Voronoi diagram
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Summary
An efficient algorithm is often not at all obvious to discover, and very different algo‐
rithms may be the best ones to choose for different data sets, different processing
environments (such as where you can exploit parallelism), and different goals. This
brief introduction only scratched the surface of algorithms. Hopefully you are now
inspired to learn more about these different approaches as well as the variety of
algorithms we have collected in this book. We have implemented all algorithms and
provided suitable documentation and explanations to help you understand how to
use these algorithms and even implement them yourselves.

References
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2
The Mathematics of Algorithms

One of the most important factors for choosing an algorithm is the speed with
which it is likely to complete. Characterizing the expected computation time of an
algorithm is inherently a mathematical process. This chapter presents the mathe‐
matical tools behind this time prediction. After reading the chapter, you should
understand the various mathematical terms used throughout this book—and in the
rest of the literature that describes algorithms.

Size of a Problem Instance
An instance of a problem is a particular input data set given to a program. In most
problems, the execution time of a program increases with the size of this data set. At
the same time, overly compact representations (possibly using compression techni‐
ques) may unnecessarily slow down the execution of a program. It is surprisingly
difficult to define the optimal way to encode an instance because problems occur in
the real world and must be translated into an appropriate representation to be
solved by a program.

When evaluating an algorithm, we want as much as possible to assume the encoding
of the problem instance is not the determining factor in whether the algorithm can
be implemented efficiently. Your representation of a problem instance should
depend just on the type and variety of operations that need to be performed.
Designing efficient algorithms often starts by selecting the proper data structures in
which to represent the problem.

Because we cannot formally define the size of an instance, we assume an instance is
encoded in some generally accepted, concise manner. For example, when sorting n
integers, we adopt the general convention that each of the n numbers fits into a 32-
bit word in the computing platform, and the size of an instance to be sorted is n. In
case some of the numbers require more than one word—but only a constant, fixed
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number of words—our measure of the size of an instance is off only by a multiplica‐
tive constant. So an algorithm that performs a computation using integers stored
using 64 bits may take twice as long as a similar algorithm coded using integers
stored in 32 bits.

Algorithmic researchers accept that they are unable to compute with pinpoint accu‐
racy the costs involved in using a particular encoding in an implementation. There‐
fore, they assert that performance costs that differ by a multiplicative constant are
asymptotically equivalent, or in other words, will not matter as the problem size con‐
tinues to grow. As an example, we can expect 64-bit integers to require more pro‐
cessing time than 32-bit integers, but we should be able to ignore that and assume
that a good algorithm for a million 32-bit integers will also be good for a million 64-
bit integers. Although such a definition would be impractical for real-world situa‐
tions (who would be satisfied to learn they must pay a bill that is 1,000 times greater
than expected?), it serves as the universal means by which algorithms are compared.

For all algorithms in this book, the constants are small for virtually all platforms.
However, when implementing an algorithm in production code, you must pay
attention to the details reflected by the constants. This asymptotic approach is useful
since it can predict the performance of an algorithm on a large problem instance
based on the performance on small problem instances. It helps determine the larg‐
est problem instance that can be handled by a particular algorithm implementation
(Bentley, 1999).

To store collections of information, most programming languages support arrays,
contiguous regions of memory indexed by an integer i to enable rapid access to the
ith element. An array is one-dimensional when each element fits into a word in the
platform (e.g., an array of integers or Boolean values). Some arrays extend into mul‐
tiple dimensions, enabling more complex data representations.

Rate of Growth of Functions
We describe the behavior of an algorithm by representing the rate of growth of its
execution time as a function of the size of the input problem instance. Characteriz‐
ing an algorithm’s performance in this way is a common abstraction that ignores
numerous details. To use this measure properly requires an awareness of the details
hidden by the abstraction. Every program is run on a computing platform, which is
a general term meant to encompass:

• The computer on which the program is run, its CPU, data cache, floating-point
unit (FPU), and other on-chip features

• The programming language in which the program is written, along with the
compiler/interpreter and optimization settings for generated code

• The operating system
• Other processes being run in the background
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We assume that changing the platform will change the execution time of the pro‐
gram by a constant factor, and that we can therefore ignore platform differences in
conformance with the asymptotically equivalent principle described earlier.

To place this discussion in context, we briefly discuss the Sequential Search algo‐
rithm, presented later in Chapter 5. Sequential Search examines a list of n ≥ 1 dis‐
tinct elements, one at a time, until a desired value, v, is found. For now, assume that:

• There are n distinct elements in the list
• The list contains the desired value v
• Each element in the list is equally likely to be the desired value v

To understand the performance of Sequential Search, we must know how many
elements it examines “on average.” Since v is known to be in the list and each
element is equally likely to be v, the average number of examined elements, E(n), is
the sum of the number of elements examined for each of the n values divided by n.
Mathematically:

E n = 1
n ∑

i = 1

n
i = n n + 1

2n = 1
2n + 1

2

Thus, Sequential Search examines about half of the elements in a list of n distinct
elements subject to these assumptions. If the number of elements in the list doubles,
then Sequential Search should examine about twice as many elements; the expected
number of probes is a linear function of n. That is, the expected number of probes is
“about” c*n for some constant c; here, c = 0.5. A fundamental fact of performance
analysis is that the constant c is unimportant in the long run, because the most
important cost factor is the size of the problem instance, n. As n gets larger and
larger, the error in claiming that:

1
2n ≈ 1

2n + 1
2

becomes less significant. In fact, the ratio between the two sides of this approxima‐
tion approaches 1. That is:

lim
n ∞

1
2 n

1
2 n + 1

2

= 1

although the error in the estimation is significant for small values of n. In this con‐
text, we say the rate of growth of the expected number of elements that Sequential
Search examines is linear. That is, we ignore the constant multiplier and are con‐
cerned only when the size of a problem instance is large.
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When using the abstraction of the rate of growth to choose between algorithms,
remember that:

Constants matter
That’s why we use supercomputers and upgrade our computers on a regular
basis.

Size of n is not always large
We will see in Chapter 4 that the rate of growth of the execution time of Quick‐
sort is less than the rate of growth of the execution time of Insertion Sort. Yet
Insertion Sort outperforms Quicksort for small arrays on the same platform.

An algorithm’s rate of growth determines how it will perform on increasingly larger
problem instances. Let’s apply this underlying principle to a more complex example.

Consider evaluating four sorting algorithms for a specific sorting task. The follow‐
ing performance data was generated by sorting a block of n random strings.
For string blocks of size n = 1 – 512, 50 trials were run. The best and worst perform‐
ances were discarded, and Figure 2-1 shows the average running time (in microsec‐
onds) of the remaining 48 results. The variance between the runs is surprising.

One way to interpret these results is to try to design a function that will predict the
performance of each algorithm on a problem instance of size n. We are unlikely to
guess such a function, so we use commercially available software to compute a trend
line with a statistical process known as regression analysis. The “fitness” of a trend
line to the actual data is based on a value between 0 and 1, known as the R2 value. R2

values near 1 indicate high fitness. For example, if R2 = 0.9948, there is only a 0.52%
chance the fitness of the trend line is due to random variations in the data.

Sort-4 is clearly the worst performing of these sort algorithms. Given the 512
data points as plotted in a spreadsheet, the trend line to which its performance con‐
forms is:

y = 0.0053*n2 – 0.3601*n + 39.212

R2 = 0.9948

Having an R2 confidence value so close to 1 declares this an accurate estimate.
Sort-2 offers the fastest implementation over the given range of points. Its behavior
is characterized by the following trend line equation:

y = 0.05765*n*log(n) + 7.9653

Sort-2 marginally outperforms Sort-3 initially, and its ultimate behavior is perhaps
10% faster than Sort-3. Sort-1 shows two distinct behavioral patterns. For blocks of
39 or fewer strings, the behavior is characterized by:
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y = 0.0016*n2 + 0.2939*n + 3.1838

R2 = 0.9761

However, with 40 or more strings, the behavior is characterized by:

y = 0.0798*n*log(n) + 142.7818

Figure 2-1. Comparing four sort algorithms on small data sets

The numeric coefficients in these equations are entirely dependent upon the plat‐
form on which these implementations execute. As described earlier, such incidental
differences are not important. The long-term trend as n increases dominates the
computation of these behaviors. Indeed, Figure 2-1 graphs the behavior using two
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different ranges to show that the real behavior for an algorithm may not be apparent
until n is large enough.

Algorithm designers seek to understand the behavioral differences that exist
between algorithms. Sort-1 reflects the performance of qsort on Linux 2.6.9. When
reviewing the source code (which can be found through any of the available Linux
code repositories), we discover the following comment: “Qsort routine from Bentley
& McIlroy’s Engineering a Sort Function.” Bentley and McIlroy (1993) describe how
to optimize Quicksort by varying the strategy for problem sizes less than 7, between
8 and 39, and for 40 and higher. It is satisfying to see that the empirical results pre‐
sented here confirm the underlying implementation.

Analysis in the Best, Average, and Worst Cases
One question to ask is whether the results of the previous section will be true for all
input problem instances. How will the behavior of Sort-2 change with different
input problem instances of the same size?

• The data could contain large runs of elements already in sorted order
• The input could contain duplicate values
• Regardless of the size n of the input set, the elements could be drawn from a

much smaller set and contain a significant number of duplicate values

Although Sort-4 from Figure 2-1 was the slowest of the four algorithms for sorting
n random strings, it turns out to be the fastest when the data is already sorted. This
advantage rapidly fades away, however; with just 32 random items out of position,
as shown in Figure 2-2, Sort-3 now has the best performance.

However, suppose an input array with n strings is “nearly sorted”—i.e., n/4 of the
strings (25% of them) are swapped with another position just four locations away. It
may come as a surprise to see in Figure 2-3 that Sort-4 outperforms the others.

The conclusion to draw is that for many problems, no single optimal algorithm
exists. Choosing an algorithm depends on understanding the problem being solved
and the underlying probability distribution of the instances likely to be treated, as
well as the behavior of the algorithms being considered.

To provide some guidance, algorithms are typically presented with three common
cases in mind:

Worst case
Defines a class of problem instances for which an algorithm exhibits its worst
runtime behavior. Instead of trying to identify the specific input, algorithm
designers typically describe properties of the input that prevent an algorithm
from running efficiently.
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Average case
Defines the expected behavior when executing the algorithm on random prob‐
lem instances. While some instances will require greater time to complete
because of some special cases, the vast majority will not. This measure
describes the expectation an average user of the algorithm should have.

Best case
Defines a class of problem instances for which an algorithm exhibits its best
runtime behavior. For these instances, the algorithm does the least work. In
reality, the best case rarely occurs.

By knowing the performance of an algorithm under each of these cases, you can
judge whether an algorithm is appropriate to use in your specific situation.

Figure 2-2. Comparing sort algorithms on sorted/nearly sorted data
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Figure 2-3. Sort-4 wins on nearly sorted data

Worst Case
For any particular value of n, the work done by an algorithm or program may vary
dramatically over all the instances of size n. For a given program and a given value
n, the worst-case execution time is the maximum execution time, where the maxi‐
mum is taken over all instances of size n.

We are interested in the worst-case behavior of an algorithm because it often is the
easiest case to analyze. It also explains how slow the program could be in
any situation.

More formally, if Sn is the set of instances si of size n, and t() is a function that meas‐
ures the work done by an algorithm on each instance, then work done by an algo‐
rithm on Sn in the worst case is the maximum of t(si) over all si ∈ Sn. Denoting this
worst-case performance on Sn by Twc(n), the rate of growth of Twc(n) defines the
worst-case complexity of the algorithm.

There are not enough resources to compute each individual instance si on which to
run the algorithm to determine empirically the one that leads to worst-case perfor‐
mance. Instead, an adversary crafts a worst-case problem instance given the
description of the algorithm.

Average Case
Consider a telephone system designed to support a large number n of telephones. In
the worst case, it must be able to complete all calls where n/2 people pick up their
phones and call the other n/2 people. Although this system will never crash because
of overload, it would be prohibitively expensive to construct. In reality, the proba‐
bility that each of n/2 people calls a unique member of the other n/2 people is
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exceedingly small. Instead, we could design a system that is cheaper to build and use
mathematical tools to consider the probability of crash due to overload.

For the set of instances of size n, we associate a probability distribution Pr{si}, which
assigns a probability between 0 and 1 to each instance si such that the sum of the
probabilities over all instances of size n is 1. More formally, if Sn is the set of instan‐
ces of size n, then:

∑
si ∈ Sn

Pr si = 1

If t() measures the work done by an algorithm on each instance, then the average-
case work done by an algorithm on Sn is:

Tac n = ∑
si ∈ Sn

t si Pr si

That is, the actual work done on instance si, t(si), is weighted with the probability
that si will actually be presented as input. If Pr{si} = 0, then the actual value of t(si)
does not impact the expected work done by the program. Denoting this average-
case work on Sn by Tac(n), then the rate of growth of Tac(n) defines the average-case
complexity of the algorithm.

Recall that when describing the rate of growth of work or time, we consistently
ignore constants. So when we say that Sequential Search of n elements takes,
on average:

1
2n + 1

2

probes (subject to our earlier assumptions), then by convention we simply say that
subject to these assumptions, we expect Sequential Search will examine a linear
number of elements, or order n.

Best Case
Knowing the best case for an algorithm is useful even though the situation rarely
occurs in practice. In many cases, it provides insight into the optimal circumstance
for an algorithm. For example, the best case for Sequential Search is when it
searches for a desired value, v, which ends up being the first element in the list.
Consider a slightly different approach, which we’ll call Counting Search, that
counts the number of times that v appears in a list. If the computed count is zero,
then the item was not found, so it returns false; otherwise, it returns true. Note
that Counting Search always searches through the entire list; therefore, even
though its worst-case behavior is O(n)—the same as Sequential Search—its best-
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case behavior remains O(n), so it is unable to take advantage of either the best-case
or average-case situations in which it could have performed better.

Lower and Upper Bounds
We simplify the presentation of the “Big O” notation in this book. The goal is to
classify the behavior of an algorithm as it solves problem instances of increasing
size, n. The classification is stated as O(f(n)) where f(n) is most commonly a func‐
tion such as n, n3, or 2n.

For example, assume there is an algorithm whose worst-case performance is never
greater than directly proportional to the size of the input problem instance, once the
size is “large enough.” More precisely, there exists some constant c > 0 such that t(n)
≤ c*n for all n > n0, where n0 is the point where each problem instance is “large
enough.” In this case, the classification would be the function f(n) = n and we would
use the notation O(n). For this same algorithm, assume that its best-case perfor‐
mance is never smaller than directly proportional to the size of the input problem
instance. In this case, there exists a different constant c and a different threshold
problem size, n0, and t(n) ≥ c*n for all n > n0. Here classification once again is f(n) =
n and we would use the notation Ω(n).

To summarize, the actual formal notation is as follows:

• The lower bound for the execution time of an algorithm is classified as Ω(f(n))
and corresponds to the best-case scenario

• The upper bound for the execution time is classified as O(f(n)) and corresponds
to the worst-case scenario

It is necessary to consider both scenarios. The careful reader will note that we could
just as easily have used a function f(n) = c*2n to classify the algorithm discussed
above as O(2n), though this describes much slower behavior. Indeed, doing so would
provide little information—it would be like saying you need no more than 1 week to
perform a 5-minute task. In this book, we always present an algorithm’s classifica‐
tion using its closest match.

In complexity theory, there is another notation, Θ(f(n)), which combines these con‐
cepts to identify an accurate tight bound—that is, when the lower bound is deter‐
mined to be Ω(f(n)) and the upper bound is also O(f(n)) for the same classification
f(n). We chose the widely accepted (and more informal use) of O(f(n)) to simplify
the presentations and analyses. We ensure that when discussing algorithmic behav‐
ior, there is no more accurate f ’(n) that can be used to classify the algorithms we
identify as O(f(n)).

Performance Families
We compare algorithms by evaluating their performance on problem instances of
size n. This methodology is the standard means developed over the past half-
century for comparing algorithms. By doing so, we can determine which algorithms
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scale to solve problems of a nontrivial size by evaluating the running time needed by
the algorithm in relation to the size of the provided input. A secondary performance
evaluation is to consider how much memory or storage an algorithm needs; we
address these concerns within the individual algorithm descriptions, as appropriate.

We use the following classifications, which are ordered by decreasing efficiency:

• Constant: O(1)
• Logarithmic: O(log n)

• Sublinear: O(nd) for d < 1
• Linear: O(n)
• Linearithmic: O(n log n)

• Quadratic: O(n2)

• Exponential: O(2n)

When evaluating the performance of an algorithm, keep in mind that you must
identify the most expensive computation within an algorithm to determine its clas‐
sification. For example, consider an algorithm that is subdivided into two tasks, a
task classified as linear followed by a task classified as quadratic. The overall perfor‐
mance of the algorithm must therefore be classified as quadratic.

We’ll now illustrate these performance classifications by example.

Constant Behavior
When analyzing the performance of the algorithms in this book, we frequently
claim that some primitive operations provide constant performance. Clearly this
claim is not an absolute determinant for the actual performance of the operation
since we do not refer to specific hardware. For example, comparing whether two
32-bit numbers x and y are the same value should have the same performance
regardless of the actual values of x and y. A constant operation is defined to have
O(1) performance.

What about the performance of comparing two 256-bit numbers? Or two 1,024-bit
numbers? It turns out that for a predetermined fixed size k, you can compare two k-
bit numbers in constant time. The key is that the problem size (i.e., the values x and
y being compared) cannot grow beyond the fixed size k. We abstract the extra effort,
which is multiplicative in terms of k, using the notation O(1).

Log n Behavior
A bartender offers the following $10,000 bet to any patron: “I will choose a secret
number from 1 to 1,000,000 and you will have 20 chances to guess my number.
After each guess, I will either tell you Too Low, Too High, or You Win. If you guess
my number in 20 or fewer questions, I give you $10,000. If none of your 20 guesses
is my secret number you must give me $10,000.” Would you take this bet? You
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should, because you can always win. Table 2-1 shows a sample scenario for the
range 1–8 that asks a series of questions, reducing the problem size by about half
each time.

Table 2-1. Sample behavior for guessing number from 1–8

Number First round Second round Third round Fourth round

1 Is it 4?
Too High

Is it 2?
Too High

Must be 1!
You Win

2 Is it 4?
Too High

Is it 2?
You Win

3 Is it 4?
Too High

Is it 2?
Too Low

Must be 3!
You Win

4 Is it 4?
You Win

5 Is it 4?
Too Low

Is it 6?
Too High

Must be 5!
You Win

6 Is it 4?
Too Low

Is it 6?
You Win

7 Is it 4?
Too Low

Is it 6?
Too Low

Is it 7?
You Win

8 Is it 4?
Too Low

Is it 6?
Too Low

Is it 7?
Too Low

Must be 8!
You Win

In each round, depending upon the specific answers from the bartender, the size of
the potential range containing the secret number is cut in about half each time.
Eventually, the range of the secret number will be limited to just one possible num‐
ber; this happens after 1 + ⌊log2 (n)⌋ rounds, where log2(x) computes the logarithm
of x in base 2. The floor function ⌊x⌋ rounds the number x down to the largest inte‐
ger smaller than or equal to x. For example, if the bartender chooses a number
between 1 and 10, you could guess it in 1 + ⌊log2 (10)⌋ = 1 + ⌊3.32⌋, or four guesses.
As further evidence of this formula, if the bartender chooses one of two numbers,
then you need two rounds to guarantee that you will guess the number, or 1 + ⌊log2
(2)⌋ = 1 + 1 = 2. Remember, according to the bartender’s rules, you must guess the
number out loud.

This same approach works equally well for 1,000,000 numbers. In fact, the Guessing
algorithm shown in Example 2-1 works for any range [low, high] and determines
the value of the hidden number, n, in 1 + ⌊log2 (high-low + 1)⌋ rounds. If there are
1,000,000 numbers, this algorithm will locate the number in at most 1 + ⌊log2
(1,000,000)⌋ = 1 + ⌊19.93⌋, or 20 guesses (the worst case).
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Example 2-1. Java code to guess number in range [low, high]

// Compute number of turns when n is guaranteed to be in range [low,high].
public static int turns (int n, int low, int high) {
  int turns = 0;
  // Continue while there is a potential number to guess
  while (high >= low) {
    turns++;
    int mid = (low + high)/2;
    if (mid == n) {
      return turns;
    } else if (mid < n) {
      low = mid + 1;
    } else {
      high = mid - 1;
    }
  }
  return turns;
}

Logarithmic algorithms are extremely efficient because they rapidly converge on a
solution. These algorithms succeed because they reduce the size of the problem by
about half each time. The Guessing algorithm reaches a solution after at most k = 1
+ ⌊log2 (n)⌋ iterations, and at the ith iteration (0 < i ≤ k), the algorithm computes a
guess that is known to be within ±ϵ = 2k–i – 1 from the actual hidden number. The
quantity ϵ is considered the error, or uncertainty. After each iteration of the loop, ϵ
is cut in half.

For the remainder of this book, whenever we refer to log (n) it is assumed to be
computed in base 2, so we will drop the subscript log2 (n).

Another example showing efficient behavior is the Bisection algorithm, which com‐
putes a root of an equation in one variable; namely, for what values of x does a con‐
tinuous function f(x) = 0? You start with two values, a and b, for which f(a) and f(b)
are opposite signs—that is, one is positive and one is negative. At each step, the
method bisects the range [a, b] by computing its midpoint, c, and determines in
which half the root must lie. Thus, with each round, c approximates a root value and
the method cuts the error in half.

To find a root of f(x) = x*sin(x) – 5*x – cos(x), start with a = –1 and b = 1. As shown
in Table 2-2, the algorithm converges on the solution of f(x) = 0, where x =
–0.189302759 is a root of the function.

Table 2-2. Bisection method

n a b c f(c)

1 –1 1 0 –1

2 –1 0 –0.5 1.8621302

3 –0.5 0 –0.25 0.3429386
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n a b c f(c)

4 –0.25 0 –0.125 –0.3516133

5 –0.25 –0.125 –0.1875 –0.0100227

6 –0.25 –0.1875 –0.21875 0.1650514

7 –0.21875 –0.1875 –0.203125 0.0771607

8 –0.203125 –0.1875 –0.1953125 0.0334803

9 –0.1953125 –0.1875 –0.1914062 0.0117066

10 –0.1914062 –0.1875 –0.1894531 0.0008364

11 –0.1894531 –0.1875 –0.1884766 –0.0045945

12 –0.1894531 –0.1884766 –0.1889648 –0.0018794

13 –0.1894531 –0.1889648 –0.189209 –0.0005216

14 –0.1894531 –0.189209 –0.1893311 0.0001574

15 –0.1893311 –0.189209 –0.18927 –0.0001821

16 –0.1893311 –0.18927 –0.1893005 –0.0000124

Sublinear O(nd) Behavior for d < 1
In some cases, the behavior of an algorithm is better than linear, yet not as efficient
as logarithmic. As discussed in Chapter 10, a k-d tree in multiple dimensions can
partition a set of n d-dimensional points efficiently. If the tree is balanced, the
search time for range queries that conform to the axes of the points is O(n1–1/d). For
two-dimensional queries, the resulting performance is O(sqrt(n)).

Linear Performance
Some problems clearly seem to require more effort to solve than others. A child can
evaluate 7 + 5 to get 12. How much harder is the problem 37 + 45?

Specifically, how hard is it to add two n-digit numbers an–1…a0 + bn–1…b0 to result
in an n + 1-digit number cn…c0 digit value? The primitive operations used in this
Addition algorithm are as follows:

ci ai + bi + carryi mod 10

carryi + 1
1 if ai + bi + carryi ≥ 10

0 otherwise
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A sample Java implementation of Addition is shown in Example 2-2, where an n-
digit number is represented as an array of int values whose most significant (i.e.,
leftmost) digit is in index position 0. For the examples in this section, it is assumed
that each of these values is a decimal digit d such that 0 ≤ d ≤9.

Example 2-2. Java implementation of add

public static void add (int[] n1, int[] n2, int[] sum) {
  int position = n1.length-1;
  int carry = 0;
  while (position >= 0) {
    int total = n1[position] + n2[position] + carry;
    sum[position+1] = total % 10;
    if (total > 9) { carry = 1; } else { carry = 0; }
    position--;
  }
  sum[0] = carry;
}

As long as the input problem can be stored in memory, add computes the addition
of the two numbers as represented by the input integer arrays n1 and n2 and stores
the result in the array sum. Would this implementation be as efficient as the follow‐
ing plus alternative, listed in Example 2-3, which computes the exact same answer
using different computations?

Example 2-3. Java implementation of plus

public static void plus(int[] n1, int[] n2, int[] sum) {
  int position = n1.length;
  int carry = 0;
  while (--position >= 0) {
    int total = n1[position] + n2[position] + carry;
    if (total > 9) {
      sum[position+1] = total-10;
      carry = 1;
    } else {
      sum[position+1] = total;
      carry = 0;
    }
  }
  sum[0] = carry;
}

Do these small implementation details affect the performance of an algorithm? Let’s
consider two other potential factors that can impact the algorithm’s performance:

• add and plus can trivially be converted into C programs. How does the choice
of language affect the algorithm’s performance?
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• The programs can be executed on different computers. How does the choice of
computer hardware affect the algorithm’s performance?

The implementations were executed 10,000 times on numbers ranging from 256
digits to 32,768 digits. For each digit size, a random number of that size was gener‐
ated; thereafter, for each of the 10,000 trials, these two numbers were circular shifted
(one left and one right) to create two different numbers to be added. Two different
programming languages were used (C and Java). We start with the hypothesis that
as the problem size doubles, the execution time for the algorithm doubles as well.
We would like to know that this overall behavior occurs regardless of the machine,
programming language, or implementation variation used. Each variation was exe‐
cuted on a set of configurations:

g
C version was compiled with debugging information included.

O1, O2, O3
C version was compiled under these different optimization levels. Increasing
numbers imply better performance.

Java
Java implementation of algorithm.

Table 2-3 contains the results for both add and plus. The eighth and final column
compares the ratio of the performance of plus on problems of size 2n versus prob‐
lems of size n. Define t(n) to be the actual running time of the Addition algorithm
on an input of size n. This growth pattern provides empirical evidence of the time to
compute plus for two n-digit numbers.

Table 2-3. Time (in milliseconds) to execute 10,000 add/plus invocations on
random digits of size n

n Add-g Add-java Add-O3 Plus-g Plus-java Plus-O3 Ratio

256 33 19 10 31 20 11

512 67 22 20 58 32 23 2.09

1024 136 49 40 126 65 46 2.00

2048 271 98 80 241 131 95 2.07

4096 555 196 160 489 264 195 2.05

8192 1107 392 321 972 527 387 1.98

16384 2240 781 647 1972 1052 805 2.08

32768 4604 1554 1281 4102 2095 1721 2.14

65536 9447 3131 2572 8441 4200 3610 2.10

131072 19016 6277 5148 17059 8401 7322 2.03
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n Add-g Add-java Add-O3 Plus-g Plus-java Plus-O3 Ratio

262144 38269 12576 10336 34396 16811 14782 2.02

524288 77147 26632 21547 69699 35054 30367 2.05

1048576 156050 51077 53916 141524 61856 66006 2.17

We can classify the Addition algorithm as being linear with respect to its input size
n. That is, there is some constant c > 0 such that t(n) ≤ c*n for “large enough” n, or
more precisely, all n > n0. We don’t actually need to compute the actual value of c or
n0; we just know they exist and they can be computed. An argument can be made to
establish a linear-time lower bound on the complexity of Addition by showing that
every digit must be examined (consider the consequences of not checking one of
the digits).

For all plus executions (regardless of language or compilation configuration) of
Addition, we can set c to 1/7 and choose n0 to be 256. Other implementations of
Addition would have different constants, yet their overall behavior would still be
linear. This result may seem surprising given that most programmers assume inte‐
ger arithmetic is a constant time operation; however, constant time addition is ach‐
ievable only when the integer representation (such as 16-bit or 64-bit) uses a fixed
integer size n.

When considering differences in algorithms, the constant c is not as important as
knowing the rate of growth of the algorithm. Seemingly inconsequential differences
result in different performance. The plus implementation of Addition attempts to
improve efficiency by eliminating the modulo operator (%). Still, when compiling
both plus and add using -O3 optimization, add is nearly 30% faster. This is not to
say that we ignore the value of c. Certainly if we execute Addition a large number of
times, even small changes to the actual value of c can have a large impact on the
performance of a program.

Linearithmic Performance
A common behavior in efficient algorithms is best described by this performance
family. To explain how this behavior occurs in practice, let’s define t(n) to represent
the time an algorithm takes to solve an input problem instance of size n. Divide and
Conquer is an efficient way to solve a problem in which a problem of size n is divi‐
ded into (roughly equal) subproblems of size n/2, which are solved recursively. The
solutions of these subproblems are combined together in linear time to solve the
original problem of size n. Mathematically, this can be stated as:

t(n) = 2*t(n/2) + c*n

That is, t(n) includes the cost of the two subproblems together with no more than a
linear time cost (i.e., c*n) to merge the results. Now, on the right side of the
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equation, t(n/2) is the time to solve a problem of size n/2; using the same logic, this
can be represented as:

t(n/2) = 2*t(n/4) + c*n/2

and so the original equation is now:

t(n) = 2*[2*t(n/4) + c*n/2] + c*n

If we expand this out once more, we see that:

t(n) = 2*[2*[2*t(n/8) + c*n/4] + c*n/2] + c*n

This last equation reduces to t(n) = 8*t(n/8) + 4*c*n/4 + 2*c*n/2 + c*n, which can be
simplified as 8*t(n/8) + 3*c*n. We can then say that t(n) = (2k)*t(n/2k) + k*c*n. This
expansion ends when 2k = n (i.e., when k = log(n)). In the final base case when the
problem size is 1, the performance t(1) is a constant d. Thus, the closed-form for‐
mula for t(n) = n*d + c*n*log(n). Because c*n*log(n) is asymptotically greater than
d*n for any fixed constants c and d, t(n) can be simply written as O(n log n).

Quadratic Performance
Now consider a similar problem where two integers of size n are multiplied
together. Example 2-4 shows an implementation of Multiplication, an elementary
school algorithm, using the same n-digit representation used earlier when adding
numbers.

Example 2-4. mult implementation of Multiplication in Java

public static void mult (int[] n1, int[] n2, int[] result) {
  int pos = result.length-1;

  // clear all values
  for (int i = 0; i < result.length; i++) { result[i] = 0; }
  for (int m = n1.length-1; m>=0; m--) {
    int off = n1.length-1 - m;
    for (int n = n2.length-1; n>=0; n--,off++) {
      int prod = n1[m]*n2[n];

      // compute partial total by carrying previous digit's position
      result[pos-off] += prod % 10;
      result[pos-off-1] += result[pos-off]/10 + prod/10;
      result[pos-off] %= 10;
    }
  }
}
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Once again, an alternative program is written, times, which eliminates the need for
the costly modulo operator, and skips the innermost computations when n1[m] is
zero (note that times is not shown here, but can be found in the provided code
repository). The times variation contains 203 lines of generated Java code to
remove the two modulo operators. Does this variation show cost savings that vali‐
date the extra maintenance and development cost in managing this generated code?

Table 2-4 shows the behavior of these implementations of Multiplication using the
same random input set used when demonstrating Addition. Figure 2-4 graphically
depicts the performance, showing the parabolic growth curve that is the trademark
of quadratic behavior.

Table 2-4. Time (in milliseconds) to execute 10,000 multiplications

n multn(ms) timesn(ms) mult2n/multn

4 2 41

8 8 83 4

16 33 129 4.13

32 133 388 4.03

64 530 1276 3.98

128 2143 5009 4.04

256 8519 19014 3.98

512 34231 74723 4.02

Figure 2-4. Comparison of mult versus times
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Even though the times variation is twice as slow, both times and mult exhibit the
same asymptotic performance. The ratio of mult2n/multn is roughly 4, which dem‐
onstrates that the performance of Multiplication is quadratic. Let’s define t(n) to be
the actual running time of the Multiplication algorithm on an input of size n. By
this definition, there must be some constant c > 0 such that t(n) ≤ c*n2 for all n > n0.
We don’t actually need to know the full details of the c and n0 values, just that they
exist. For the mult implementation of Multiplication on our platform, we can set c
to 1/7 and choose n0 to be 16.

Once again, individual variations in implementation are unable to “break” the
inherent quadratic performance behavior of an algorithm. However, other algo‐
rithms exist (Zuras, 1994) to multiply a pair of n-digit numbers that are significantly
faster than quadratic. These algorithms are important for applications such as data
encryption, in which one frequently multiplies large integers.

Less Obvious Performance Computations
In most cases, reading the description of an algorithm (as shown in Addition and
Multiplication) is sufficient to classify an algorithm as being linear or quadratic.
The primary indicator for quadratic, for example, is a nested loop structure. But
some algorithms defy such straightforward analysis. Consider the GCD algorithm
in Example 2-5, designed by Euclid to compute the greatest common divisor
between two integers.

Example 2-5. Euclid’s GCD algorithm

public static void gcd (int a[], int b[], int gcd[]) {
  if (isZero (a)) { assign (gcd, a); return; }
  if (isZero (b)) { assign (gcd, b); return; }

  a = copy (a);      // Make copies to ensure
  b = copy (b);      // that a and b are not modified

  while (!isZero (b)) {
    // last argument to subtract represents sign of results which
    // we can ignore since we only subtract smaller from larger.
    // Note compareTo (a, b) is positive if a > b.
    if (compareTo (a, b) > 0) {
      subtract (a, b, gcd, new int[1]);
      assign (a, gcd);
    } else {
      subtract (b, a, gcd, new int[1]);
      assign (b, gcd);
    }
  }

  // value held in a is the computed gcd of original (a,b)
  assign (gcd, a);
}
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This algorithm repeatedly compares two numbers (a and b) and subtracts the
smaller number from the larger until zero is reached. The implementations of the
helper methods (isZero, assign, compareTo, subtract) can be found in the accom‐
panying code repository.

This algorithm produces the greatest common divisor of two numbers, but there is
no clear answer as to how many iterations will be required based on the size of the
input. During each pass through the loop, either a or b is reduced and never
becomes negative, so we can guarantee that the algorithm will terminate, but some
GCD requests take longer than others; for example, using this algorithm,
gcd(1000,1) takes 999 steps! Clearly the performance of this algorithm is more sen‐
sitive to its inputs than Addition or Multiplication, in that there are different prob‐
lem instances of the same size that require very different computation times. This
GCD algorithm exhibits its worst-case performance when asked to compute the
GCD of (10k–1, 1); it needs to process the while loop n = 10k–1 times! Since we have
already shown that Addition is O(n) in terms of the input size n—and so is subtrac‐
tion, by the way—GCD can be classified as O(n2).

The GCD implementation in Example 2-5 is outperformed handily by the
ModGCD algorithm described in Example 2-6, which relies on the modulo operator
to compute the integer remainder of a divided by b.

Example 2-6. ModGCD algorithm for GCD computation

public static void modgcd (int a[], int b[], int gcd[]) {
  if (isZero(a)) { assign (gcd, a); return; }
  if (isZero(b)) { assign (gcd, b); return; }

  // align a and b to have same number of digits and work on copies
  a = copy(normalize(a, b.length));
  b = copy(normalize(b, a.length));

  // ensure a is greater than b. Also return trivial gcd
  int rc = compareTo(a,b);
  if (rc == 0) { assign (gcd, a); return; }
  if (rc < 0) {
    int t[] = b;
    b = a;
    a = t;
  }

  int quot[] = new int[a.length];
  int remainder[] = new int[a.length];
  while (!isZero(b)) {
    int t[] = copy (b);
    divide (a, b, quot, remainder);
    assign (b, remainder);
    assign (a, t);
  }
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  // value held in a is the computed gcd of (a,b).
  assign (gcd, a);
}

ModGCD arrives at a solution more rapidly because it won’t waste time subtracting
really small numbers from large numbers within the while loop. This difference is
not simply an implementation detail; it reflects a fundamental shift in how the algo‐
rithm solves the problem.

The computations shown in Figure 2-5 (and enumerated in Table 2-5) show the
result of generating 142 random n-digit numbers and computing the GCD of all
10,011 pairs of these numbers.

Figure 2-5. Comparison of gcd versus modgcd

Table 2-5. Time (in milliseconds) to execute 10,011 gcd computations

n modgcd gcd modgcd2n/modgcdn

4 68 45 0.23

8 226 408 3.32

16 603 1315 2.67

32 1836 4050 3.04

64 5330 18392 2.9

128 20485 76180 3.84

Even though the ModGCD implementation is nearly three times faster than the cor‐
responding GCD implementation on random computations, the performance of
ModGCD is quadratic, or O(n2). The analysis is challenging and it turns out that the
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worst-case performance for ModGCD occurs for two successive Fibonacci num‐
bers. Still, from Table 2-5 we can infer that the algorithm is quadratic because the
performance appears to quadruple as the problem size doubles.

More sophisticated algorithms for computing GCD have been designed—though
most are impractical except for extremely large integers—and analysis suggests that
the problem allows for more efficient algorithms.

Exponential Performance
Consider a lock with three numeric dials in sequence, each of which contains the
digits from 0 to 9. Each dial can be set independently to one of these 10 digits.
Assume you have a found such a lock, but don’t have its combination; it is simply a
matter of some manual labor to try each of the 1,000 possible combinations, from
000 to 999. To generalize this problem, assume the lock has n dials, then the total
number of possibilities is 10n. Solving this problem using a brute-force approach
would be considered exponential performance or O(10n), in this case in base 10.
Often, the exponential base is 2, but this performance holds true for any base b > 1.

Exponential algorithms are practical only for very small values of n. Some algo‐
rithms might have a worst-case behavior that is exponential, yet still are heavily
used in practice because of their average-case behavior. A good example is the Sim‐
plex algorithm for solving linear programming problems.

Summary of Asymptotic Growth
An algorithm with better asymptotic growth will eventually execute faster than one
with worse asymptotic growth, regardless of the actual constants. The actual break‐
point will differ based on the actual constants, but it exists and can be empirically
evaluated. In addition, during asymptotic analysis we only need to be concerned
with the fastest-growing term of the t(n) function. For this reason, if the number of
operations for an algorithm can be computed as c*n3 + d*n*log(n), we would classify
this algorithm as O(n3) because that is the dominant term that grows far more rap‐
idly than n*log(n).

Benchmark Operations
The Python operator ** rapidly performs exponentiation. The sample computation
2**851 is shown here.

150150336576094004599423153910185137226235191870990070733
557987815252631252384634158948203971606627616971080383694
109252383653813326044865235229218132798103200794538451818
051546732566997782908246399595358358052523086606780893692
34238529227774479195332149248

In Python, computations are relatively independent of the underlying platform (i.e.,
computing 2851 in Java or C on most platforms would cause numeric overflow). But
a fast computation in Python yields the result shown in the preceding example. Is it
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an advantage or a disadvantage that Python abstracts away the underlying architec‐
ture? Consider the following two hypotheses:

Hypothesis H1
Computing 2n has consistent behavior, regardless of the value of n.

Hypothesis H2
Large numbers (such as shown previously in expanded form) can be treated in
the same way as any other number, such as 123,827 or 997.

To refute hypothesis H1, we conduct 10,000 evaluations of 2n. The total execution
time for each value of n is shown in Figure 2-6.

Figure 2-6. Execution times for computing 2x in Python

Oddly enough, the performance seems to have different behaviors, one for x smaller
than 16, a second for x values around 145, and a third for x greater than 200. This
behavior reveals that Python uses an Exponentiation By Squaring algorithm for
computing powers using the ** operator. Manually computing 2x using a for loop
would cause quadratic performance.

To refute hypothesis H2, we conduct an experiment that precomputes the value of
2n and then evaluates the time to compute π*2n. The total execution time of these
10,000 trials is shown in Figure 2-7.

Why do the points in Figure 2-7 not appear on a straight line? For what value of x
does the line break? The multiplication operation (*) appears to be overloaded. It
does different things depending on whether the numbers being multiplied are
floating-point numbers, or integers that each fit into a single word of the machine,
or integers that are so large they must each be stored in several words of the
machine, or some combination of these.

32 | Chapter 2: The Mathematics of Algorithms



Figure 2-7. Execution times for computing large multiplication

The break in the plot occurs for x = {64,65} and appears to correspond to a shift in
the storage of large floating-point numbers. Again, there may be unexpected slow‐
downs in computations that can only be uncovered by such benchmarking efforts.
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3
Algorithm Building Blocks

We build software to solve problems. But programmers are often too focused on
solving a problem to determine whether a solution to the problem already exists.
Even if the programmer knows the problem has been solved in similar cases, it’s not
clear that the existing code will actually fit the specific problem facing the program‐
mer. Ultimately, it isn’t easy to find code in a given programming language that can
be readily modified to solve the problem.

We can think of algorithms in different ways. Many practitioners are content to look
up an algorithm in a book or on some website, copy some code, run it, maybe even
test it, and then move on to the next task. In our opinion, this process does not
improve one’s understanding of algorithms. In fact, this approach can lead you
down the wrong path where you select a specific implementation of an algorithm.

The question is how to locate the right algorithm for the job quickly and understand
it well enough to ensure you’ve made a good choice. And once you’ve chosen the
algorithm, how do you implement it efficiently? Each book chapter groups together
a set of algorithms solving a standard problem (such as Sorting or Searching) or
related problems (such as Path Finding). In this chapter, we present the format we
use to describe the algorithms in this book. We also summarize the common algo‐
rithmic approaches used to solve problems.

Algorithm Template Format
The real power of using a template to describe each algorithm is that you can
quickly compare and contrast different algorithms and identify commonalities in
seemingly different algorithms. Each algorithm is presented using a fixed set of sec‐
tions that conform to this template. We may omit a section if it adds no value to the
algorithm description or add sections as needed to illuminate a particular point.

35



Name
A descriptive name for the algorithm. We use this name to communicate concisely
the algorithm to others. For example, if we talk about using a Sequential Search, it
conveys exactly what type of search algorithm we are talking about. The name of
each algorithm is always shown in Bold Font.

Input/Output
Describes the expected format of input data to the algorithm and the resulting val‐
ues computed.

Context
A description of a problem that illustrates when an algorithm is useful and when it
will perform at its best. A description of the properties of the problem/solution that
must be addressed and maintained for a successful implementation. They are the
things that would cause you to choose this algorithm specifically.

Solution
The algorithm description using real working code with documentation. All code
solutions can be found in the associated code repository.

Analysis
A synopsis of the analysis of the algorithm, including performance data and infor‐
mation to help you understand the behavior of the algorithm. Although the analysis
section is not meant to “prove” the described performance of an algorithm, you
should be able to understand why the algorithm behaves as it does. We will provide
references to actual texts that present the appropriate lemmas and proofs to explain
why the algorithms behave as described.

Variations
Presents variations of the algorithm or different alternatives.

Pseudocode Template Format
Each algorithm in this book is presented with code examples that show an imple‐
mentation in a major programming language, such as Python, C, C++, and Java. For
readers who are not familiar with all of these languages, we first introduce each
algorithm in pseudocode with a small example showing its execution.

Consider the following sample performance description, which names the algo‐
rithm and classifies its performance clearly for all three behavior cases (best, aver‐
age, and worst) described in Chapter 2.
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Sequential Search Summary
Best: O(1)    Average, Worst: O(n)

search (A,t)

  for i=0 to n-1 do 
    if A[i] = t then
      return true
  return false
end

Access each element in order, from position 0 to n-1.

The pseudocode description is intentionally brief. Keywords and function names
are described in boldface text. All variables are in lowercase characters, whereas
arrays are capitalized and their elements are referred to using A[i] notation. The
indentation in the pseudocode describes the scope of conditional if statements and
looping while and for statements.

You should refer to each algorithm summary when reading the provided source-
code implementations. After each summary, a small example (such as the one
shown in Figure 3-1) is provided to better explain the execution of the algorithm.
These figures show the dynamic behavior of the algorithms, typically with time
moving “downward” in the figure to depict the key steps of the algorithm.

Figure 3-1. Example of Sequential Search executing

Empirical Evaluation Format
We confirm the performance of each algorithm by executing with a series of bench‐
mark problems appropriate for each individual algorithm. Appendix A provides
more detail on the mechanisms used for timing purposes. To properly evaluate the
performance, a test suite is composed of a set of k individual trials (typically k ≥ 10).
The best and worst performers are discarded as outliers, the remaining k – 2 trials
are aggregated, and the average and standard deviations are computed. Tables are
shown with problem instances typically ranging in size from n = 2 to 220.
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Floating-Point Computation
Because several algorithms in this book involve numerical computations, we need
to describe the power and limitations of how modern computers process these com‐
putations. Computers perform basic computations on values stored in registers by a
central processing unit (CPU). These registers have grown in size as computer
architectures have evolved from the 8-bit Intel processors popular in the 1970s
to today’s widespread acceptance of 64-bit architectures (such as Intel’s Itanium
and Sun Microsystems Sparc processor). The CPU often supports basic operations
—such as ADD, MULT, DIVIDE, and SUB—over integer values stored within
these registers. Floating-point units (FPUs) can efficiently process floating-point
computations according to the IEEE Standard for Binary Floating-Point Arithmetic
(IEEE 754).

Mathematical computations over integer-based values (such as Booleans, 8-bit
shorts, and 16- and 32-bit integers) have traditionally been the most efficient CPU
computations. Programs are often optimized to take advantage of this historic per‐
formance differential between integer and floating-point calculations. However,
modern CPUs have dramatically improved the performance of floating-point com‐
putations relative to their integer counterparts. It is thus important that developers
become aware of the following issues when programming using floating-point
arithmetic (Goldberg, 1991).

Performance
It is commonly accepted that computations over integer values will be more efficient
than their floating-point counterparts. Table 3-1 lists the computation times of
10,000,000 operations including the Linux results (from the first edition of this
book) and results for a 1996 Sparc Ultra-2 machine. As you can see, the perfor‐
mance of individual operations can vary significantly from one platform to another.
These results show the tremendous speed improvements in processors over the past
two decades. Some of the results show 0.0000 timing because they are faster than
the available timing mechanism.

Table 3-1. Performance computations of 10,000,000 operations

Operation Sparc Ultra-2 (time in
seconds)

Linux i686 (time in
seconds)

Current (time in
seconds)

32-bit integer CMP 0.811 0.0337 0.0000

32-bit integer MUL 2.372 0.0421 0.0000

32-bit float MUL 1.236 0.1032 0.02986

64-bit double MUL 1.406 0.1028 0.02987

32-bit float DIV 1.657 0.1814 0.02982

64-bit double DIV 2.172 0.1813 0.02980
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Operation Sparc Ultra-2 (time in
seconds)

Linux i686 (time in
seconds)

Current (time in
seconds)

128-bit double MUL 36.891 0.2765 0.02434

32-bit integer DIV 3.104 0.2468 0.0000

32-bit double SQRT 3.184 0.2749 0.0526

Rounding Error
Any computation using floating-point values may introduce rounding errors
because of the nature of the floating-point representation. In general, a floating-
point number is a finite representation designed to approximate a real number
whose representation may be infinite. Table 3-2 shows information about floating-
point representations and the specific representation for the value 3.88f.

Table 3-2. Floating-point representation

Primitive type Sign Exponent Mantissa

Float 1 bit 8 bits 23 bits

Double 1 bit 11 bits 52 bits

Sample Representation of 3.88f as (0x407851ec)
01000000 01111000 01010001 11101100 (total of 32 bits)
seeeeeee emmmmmmm mmmmmmmm mmmmmmmm

The next three consecutive 32-bit floating-point representations (and values) fol‐
lowing 3.88f are:

• 0x407851ed: 3.8800004

• 0x407851ee: 3.8800006

• 0x407851ef: 3.8800008

Here are the floating-point values for three randomly chosen 32-bit values:

• 0x1aec9fae: 9.786529E-23

• 0x622be970: 7.9280355E20

• 0x18a4775b: 4.2513525E-24

In a 32-bit floating-point value, one bit is used for the sign, 8 bits form the expo‐
nent, and 23 bits form the mantissa (also known as the significand). In the Java float
representation, “the power of two can be determined by interpreting the exponent
bits as a positive number, and then subtracting a bias from the positive number. For
a float, the bias is 126” (Venners, 1996). The exponent stored is 128, so the actual
exponent value is 128 – 126, or 2.
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To achieve the greatest precision, the mantissa is always normalized so that the left‐
most digit is always 1; this bit does not have to actually be stored, but is understood
by the floating-point processor to be part of the number. In the previous example,
the mantissa is

.[1]11110000101000111101100 = [1/2] + 1/4 + 1/8 + 1/16 + 1/32 + 1/1,024 +
1/4,096 + 1/65,536 + 1/131,072 + 1/262,144 + 1/524,288 + 1/2,097,152 + 1/4,194,304

which evaluates exactly to 0.9700000286102294921875 if the full sum of fractions is
carried out.

When storing 3.88f using this representation, the approximate value is
+ 1*0.9700000286102294921875*22, which is exactly 3.88000011444091796875. The
error inherent in the value is ~0.0000001. The most common way of describing
floating-point error is to use the term relative error, which computes the ratio
of the absolute error with the desired value. Here, the relative error is
0.0000001144091796875/3.88, or 2.9E-8. It is quite common for these relative
errors to be less than 1 part per million.

Comparing Floating-Point Values
Because floating-point values are only approximate, the simplest operations in float‐
ing point become suspect. Consider the following statement:

if (x == y) { ... }

Is it truly the case that these two floating-point numbers must be exactly equal? Or
is it sufficient for them to be simply approximately equal (for which we use the sym‐
bol ≅)? Could it ever occur that two values are different though close enough that
they should be considered to be the same? Let’s consider a practical example: three
points p0 = (a, b), p1 = (c, d), and p2 = (e, f) in the Cartesian plane define an ordered
pair of line segments (p0, p1) and (p1, p2). The value of the expression (c – a)*(f – b)
– (d – b)*(e – a) can determine whether these two line segments are collinear (i.e.,
on the same line). If the value is:

• 0 then the segments are collinear
• < 0 then the segments are turning to the left (or counterclockwise)
• > 0 then the segments are turning to the right (or clockwise)

To show how floating-point errors can occur in Java computations, consider defin‐
ing three points using the values of a to f in Table 3-3.

Table 3-3. Floating-point arithmetic errors

32-bit floating point (float) 64-bit floating point (double)

a = 1/3 0.33333334 0.3333333333333333

b = 5/3 1.6666666 1.6666666666666667
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32-bit floating point (float) 64-bit floating point (double)

c = 33 33.0 33.0

d = 165 165.0 165.0

e = 19 19.0 19.0

f = 95 95.0 95.0

(c – a)*(f – b – (d – b)*(e – a) 4.8828125 E–4 −4.547473508864641 E – 13

As you can readily determine, the three points p0, p1, and p2 are collinear on the line
y = 5*x. When computing the floating-point computation test for collinearity, how‐
ever, the errors inherent in floating-point arithmetic affect the result of the compu‐
tation. Using 32-bit floating-point values, the calculation results in 0.00048828125;
using 64-bit floating-point values, the computed value is actually a very small nega‐
tive number! This example shows that both 32-bit and 64-bit floating-point repre‐
sentations fail to capture the true mathematical value of the computation. And
in this case, the result is a disagreement over whether the points represent a clock‐
wise turn, a counterclockwise turn, or collinearity. Such is the world of floating-
point computations.

One common solution to this situation is to introduce a small value δ to determine
≅ (approximate equality) between two floating-point values. Under this scheme, if
|x – y| < δ, then we consider x and y to be equal. Still, by this simple measure, even
when x ≅ y and y ≅ z, it’s possibly not true that x ≅ z. This breaks the principle of
transitivity in mathematics and makes it really challenging to write correct code.
Additionally, this solution won’t solve the collinearity problem, which used the sign
of the value (0, positive, or negative) to make its decision.

Special Quantities
While all possible 64-bit values could represent valid floating-point numbers, the
IEEE standard defines several values that are interpreted as special numbers (and
are often not able to participate in the standard mathematical computations, such as
addition or multiplication), shown in Table 3-4. These values have been designed to
make it easier to recover from common errors, such as divide by zero, square root
of a negative number, overflow of computations, and underflow of computations.
Note that the values of positive zero and negative zero are also included in this table,
even though they can be used in computations.

Table 3-4. Special IEEE 754 quantities

Special quantity 64-bit IEEE 754 representation

Positive infinity 0x7ff0000000000000L

Negative infinity 0xfff0000000000000L
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Special quantity 64-bit IEEE 754 representation

Not a number (NaN) 0x7ff0000000000001L through 0x7fffffffffffffffL
and
0xfff0000000000001L through 0xffffffffffffffffL

Negative zero 0x8000000000000000

Positive zero 0x0000000000000000

These special quantities can result from computations that go outside the acceptable
bounds. The expression 1/0.0 in Java computes to be the quantity positive infinity.
If the statement had instead read double x=1/0, then the Java virtual machine
would throw an ArithmeticException since this expression computes the integer
division of two numbers.

Example Algorithm
To illustrate our algorithm template, we now describe the Graham’s Scan algorithm
for computing the convex hull for a collection of points. This was the problem pre‐
sented in Chapter 1 and illustrated in Figure 1-3.

Name and Synopsis
Graham’s Scan computes the convex hull for a collection of Cartesian points. It
locates the lowest point, low, in the input set P and sorts the remaining points { P –
low } in reverse polar angle with respect to the lowest point. With this order in place,
the algorithm can traverse P clockwise from its lowest point. Every left turn of the
last three points in the hull being constructed reveals that the last hull point was
incorrectly chosen so it can be removed.

Input/Output
A convex hull problem instance is defined by a collection of points, P.

The output will be a sequence of (x, y) points representing a clockwise traversal of
the convex hull. It shouldn’t matter which point is first.

Context
This algorithm is suitable for Cartesian points. If the points, for example, use a dif‐
ferent coordinate system where increasing y values reflect lower points in the plane,
then the algorithm should compute low accordingly. Sorting the points by polar
angle requires trigonometric calculations.
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Graham’s Scan Summary
Best, Average, Worst: O(n log n)

graham(P)

  low = point with lowest y coordinate in P 
  remove low from P

  sort P by descending polar angle with respect to low 

  hull = {P[n-2], low} 
  for i = 0 to n-1 do
    while (isLeftTurn(secondLast(hull), last(hull), P[i])) do

      remove last point in hull 

    add P[i] to hull

  remove duplicate last point 
  return hull

Ties are broken by selecting the point with lowest x coordinate.

P[0] has max polar angle and P[n – 2] has min polar angle.

Form hull clockwise starting with min polar angle and low.

Every turn to the left reveals last hull point must be removed.

Because it will be P[n – 2].

Solution
If you solve this problem by hand, you probably have no trouble tracing the appro‐
priate edges, but you might find it hard to explain the exact sequence of steps you
took. The key step in this algorithm is sorting the points by descending polar angle
with respect to the lowest point in the set. Once ordered, the algorithm proceeds to
“walk” along these points, extending a partially constructed hull and adjusting its
structure if the last three points of the hull ever form a left turn, which would indi‐
cate a nonconvex shape. See Example 3-1.

Example 3-1. GrahamScan implementation

public class NativeGrahamScan implements IConvexHull {
  public IPoint[] compute (IPoint[] pts) {
    int n = pts.length;
    if (n < 3) { return pts; }

    // Find lowest point and swap with last one in points[] array,
    // if it isn't there already
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    int lowest = 0;
    double lowestY = pts[0].getY();
    for (int i = 1; i < n; i++) {
      if (pts[i].getY() < lowestY) {
        lowestY = pts[i].getY();
        lowest = i;
      }
    }

    if (lowest != n-1) {
      IPoint temp = pts[n-1];
      pts[n-1] = pts[lowest];
      pts[lowest] = temp;
    }

    // sort points[0..n-2] by descending polar angle with respect
    // to lowest point points[n-1].
    new HeapSort<IPoint>().sort(pts, 0, n-2,
                                new ReversePolarSorter(pts[n-1]));

    // three points *known* to be on the hull are (in this order) the
    // point with lowest polar angle (points[n-2]), the lowest point
    // (points[n-1]), and the point with the highest polar angle
    // (points[0]). Start with first two
    DoubleLinkedList<IPoint> list = new DoubleLinkedList<IPoint>();
    list.insert(pts[n-2]);
    list.insert(pts[n-1]);

    // If all points are collinear, handle now to avoid worrying about later
    double firstAngle = Math.atan2(pts[0].getY() - lowest,
                                   pts[0].getX() - pts[n-1].getX());
    double lastAngle = Math.atan2(pts[n-2].getY() - lowest,
                                  pts[n-2].getX() - pts[n-1].getX());
    if (firstAngle == lastAngle) {
      return new IPoint[] { pts[n-1], pts[0] };
    }

    // Sequentially visit each point in order, removing points upon
    // making mistake. Because we always have at least one "right
    // turn," the inner while loop will always terminate
    for (int i = 0; i < n-1; i++) {
      while (isLeftTurn(list.last().prev().value(),
                        list.last().value(),
                        pts[i])) {
        list.removeLast();
      }

      // advance and insert next hull point into proper position
      list.insert(pts[i]);
    }

    // The final point is duplicated, so we take n-1 points starting
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    // from lowest point.
    IPoint hull[] = new IPoint[list.size()-1];
    DoubleNode<IPoint> ptr = list.first().next();
    int idx = 0;
    while (idx < hull.length) {
      hull[idx++] = ptr.value();
      ptr = ptr.next();
    }

    return hull;
  }

  /** Use Collinear check to determine left turn. */
  public static boolean isLeftTurn(IPoint p1, IPoint p2, IPoint p3) {
    return (p2.getX() - p1.getX())*(p3.getY() - p1.getY()) -
           (p2.getY() - p1.getY())*(p3.getX() - p1.getX()) > 0;
  }
}

/** Sorter class for reverse polar angle with respect to a given point. */
class ReversePolarSorter implements Comparator<IPoint> {
  /** Stored x,y coordinate of base point used for comparison. */
  final double baseX;
  final double baseY;

  /** PolarSorter evaluates all points compared to base point. */
  public ReversePolarSorter(IPoint base) {
    this.baseX = base.getX();
    this.baseY = base.getY();
  }

  public int compare(IPoint one, IPoint two) {
    if (one == two) { return 0; }

    // make sure both have computed angle using atan2 function.
    // Works because one.y is always larger than or equal to base.y
    double oneY = one.getY();
    double twoY = two.getY();
    double oneAngle = Math.atan2(oneY - baseY, one.getX() - baseX);
    double twoAngle = Math.atan2(twoY - baseY, two.getX() - baseX);

    if (oneAngle > twoAngle) { return -1; }
    else if (oneAngle < twoAngle) { return +1; }

    // if same angle, then must order by decreasing magnitude
    // to ensure that the convex hull algorithm is correct
    if (oneY > twoY) { return -1; }
    else if (oneY < twoY) { return +1; }

    return 0;
  }
}
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If all n > 2 points are collinear then in this special case, the hull consists of the two
extreme points in the set. The computed convex hull might contain multiple consec‐
utive points that are collinear because no attempt is made to remove them.

Analysis
Sorting n points requires O(n log n) performance, as described in Chapter 4. The
rest of the algorithm has a for loop that executes n times, but how many times does
its inner while loop execute? As long as there is a left turn, a point is removed from
the hull, until only the first three points remain. Since no more than n points are
added to the hull, the inner while loop can execute no more than n times in total.
Thus, the performance of the for loop is O(n). The result is that the overall algo‐
rithm performance is O(n log n) since the sorting costs dominates the cost of the
whole computation.

Common Approaches
This section presents the fundamental algorithm approaches used in the book. You
need to understand these general strategies for solving problems so you see how
they can be applied to solve specific problems. Chapter 10 contains additional
strategies, such as seeking an acceptable approximate answer rather than the defini‐
tive one, or using randomization with a large number of trials to converge on the
proper result rather than using an exhaustive search.

Greedy
A Greedy strategy completes a task of size n by incrementally solving the problem
in steps. At each step, a Greedy algorithm will make the best local decision it can
given the available information, typically reducing the size of the problem being
solved by one. Once all n steps are completed, the algorithm returns the computed
solution.

To sort an array A of n numbers, for example, the Greedy Selection Sort algorithm
locates the largest value in A[0, n – 1] and swaps it with the element in location A[n
– 1], which ensures A[n – 1] is in its proper location. Then it repeats the process to
find the largest value remaining in A[0, n – 2], which is similarly swapped with the
element in location A[n – 2]. This process continues until the entire array is sorted.
For more detail, see Chapter 4.

You can identify a Greedy strategy by the way that subproblems being solved shrink
very slowly as an algorithm processes the input. When a subproblem can be com‐
pleted in O(log n) then a Greedy strategy will exhibit O(n log n) performance. If the
subproblem requires O(n) behavior, as it does here with Selection Sort, then the
overall performance will be O(n2).
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Divide and Conquer
A Divide and Conquer strategy solves a problem of size n by dividing it into two
independent subproblems, each about half the size of the original problem. Quite
often the solution is recursive, terminating with a base case that can be solved triv‐
ially. There must be some resolution computation that can determine the solution
for a problem when given two solutions for two smaller subproblems.

To find the largest element in an array of n numbers, for example, the recursive
function in Example 3-2 constructs two subproblems. Naturally, the maximum ele‐
ment of the original problem is simply the larger of the maximum values of the two
subproblems. Observe how the recursion terminates when the size of the subpro‐
blem is 1, in which case the single element vals[left] is returned.

Example 3-2. Recursive Divide and Conquer approach to finding maximum
element in array

  /** Invoke the recursion. */
  public static int maxElement (int[] vals) {
    if (vals.length == 0) {
      throw new NoSuchElementException("No Max Element in Empty Array.");
    }
    return maxElement(vals, 0, vals.length);
  }

  /** Compute maximum element in subproblem vals[left, right).
   * Note that the right endpoint is not part of the range. */
  static int maxElement (int[] vals, int left, int right) {
    if (right - left == 1) {
      return vals[left];
    }

    // compute subproblems
    int mid = (left + right)/2;
    int max1 = maxElement(vals, left, mid);
    int max2 = maxElement(vals, mid, right);

    // Resolution: compute result from results of subproblems
    if (max1 > max2) { return max1; }
    return max2;
  }

A Divide and Conquer algorithm structured as shown in Example 3-2 will exhibit
O(n) performance if the resolution step can be accomplished in constant O(1) time,
as it does here. When the resolution step itself requires O(n) computations, then the
overall performance will be O(n log n). Note that you can more rapidly find the
largest element in a collection by scanning each element and storing the largest one
found. Let this be a brief reminder that Divide and Conquer will not always provide
the fastest implementation.
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Dynamic Programming
Dynamic Programming is a variation on Divide and Conquer that solves a problem
by subdividing it into a number of simpler subproblems that are solved in a specific
order. It solves each smaller problem just once and stores the results for future
use to avoid unnecessary recomputation. It then solves problems of increasing size,
composing together solutions from the results of these smaller subproblems.
In many cases, the computed solution is provably optimal for the problem being
solved.

Dynamic Programming is frequently used for optimization problems where the
goal is to minimize or maximize a particular computation. The best way to explain
Dynamic Programming is to show a working example.

Scientists often compare DNA sequences to determine their similarities. If you rep‐
resent such a DNA sequence as a string of characters—A, C, T, or G—then the
problem is restated as computing the minimum edit distance between two strings.
That is, given a base string s1 and a target string s2 determine the fewest number of
edit operations that transform s1 into s2 if you can:

• Replace a character in s1 with a different character

• Remove a character in s1

• Insert a character into s1

For example, given a base string, s1, representing the DNA sequence “GCTAC” you
only need three edit operations to convert this to the target string, s2, whose value
is “CTCA”:

• Replace the fourth character (“A”) with a “C”
• Remove the first character (“G”)
• Replace the last “C” character with an “A”

This is not the only such sequence of operations, but you need at least three edit
operations to convert s1 to s2. For starters, the goal is to compute the value of the
optimum answer—i.e., the number of edit operations—rather than the actual
sequence of operations.

Dynamic Programming works by storing the results of simpler subproblems; in this
example, you can use a two-dimensional matrix, m[i][j], to record the result of
computing the minimum edit distance between the first i characters of s1 and the
first j characters of s2. Start by constructing the following initial matrix:

0 1 2 3 4

1 . . . .

2 . . . .
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3 . . . .

4 . . . .

5 . . . .

In this table, each row is indexed by i and each column is indexed by j. Upon com‐
pletion, the entry m[0][4] (the top-right corner of the table) will contain the result
of the edit distance between the first 0 characters of s1 (i.e., the empty string “”) and
the first four characters of s2 (i.e., the whole string “CTCA”). The value of m[0][4] is
4 because you have to insert four characters to the empty string to equal s2. Simi‐
larly, m[3][0] is 3 because starting from the first three characters of s1 (i.e., “GCT”)
you have to delete three characters to equal the first zero characters of s2 (i.e., the
empty string “”).

The trick in Dynamic Programming is an optimization loop that shows how to
compose the results of these subproblems to solve larger ones. Consider the value of
m[1][1], which represents the edit distance between the first character of s1 (“G”)
and the first character of s2 (“C”). There are three choices:

• Replace the “G” character with a “C” for a cost of 1
• Remove the “G” and insert the “C” for a cost of 2
• Insert a “C” character and then delete the “G” character for a cost of 2

You clearly want to record the minimum cost of each of these three choices, so m[1]
[1] = 1. How can you generalize this decision? Consider the computation shown in
Figure 3-2.

These three options for computing m[i][j] represent the following:

Replace cost
Compute the edit distance between the first i – 1 characters of s1 and the first j
– 1 characters of s2 and then add 1 for replacing the jth character of s2 with the
ith character of s1, if they are different.

Remove cost
Compute the edit distance between the first i – 1 characters of s1 and the first j
characters of s2 and then add 1 for removing the ith character of s1.

Insert cost
Compute the edit distance between the first i characters of s1 and the first j – 1
characters of s2 and then add 1 for inserting the jth character of s2.

Visualizing this computation, you should see that Dynamic Programming must
evaluate the subproblems in the proper order (i.e., from top row to bottom row, and
left to right within each row, as shown in Example 3-3). The computation proceeds
from row index value i = 1 to len(s1). Once the matrix m is populated with its initial
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values, a nested for loop computes the minimum value for each of the subproblems
in order until all values in m are computed. This process is not recursive, but rather,
it uses results of past computations for smaller problems. The result of the full prob‐
lem is found in m[len(s1)][len(s2)].

Figure 3-2. Computing m[i][j]

Example 3-3. Minimum edit distance solved using Dynamic Programming

def minEditDistance(s1, s2):
  """Compute minimum edit distance converting s1 -> s2."""
  len1 = len(s1)
  len2 = len(s2)

  # Create two-dimensional structure such that m[i][j] = 0
  # for i in 0 .. len1 and for j in 0 .. len2
  m = [None] * (len1 + 1)
  for i in range(len1+1):
    m[i] = [0] * (len2+1)

  # set up initial costs on horizontal and vertical
  for i in range(1, len1+1):
    m[i][0] = i
  for j in range(1, len2+1):
    m[0][j] = j

  # compute best
  for i in range(1,len1+1):
    for j in range(1,len2+1):
      cost = 1
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      if s1[i-1] == s2[j-1]: cost = 0

      replaceCost = m[i-1][j-1] + cost
      removeCost  = m[i-1][j] + 1
      insertCost  = m[i][j-1] + 1
      m[i][j]     = min(replaceCost,removeCost,insertCost)

  return m[len1][len2]

Table 3-5 shows the final value of m.

Table 3-5. Result of all subproblems

0 1 2 3 4

1 1 2 3 4

2 1 2 2 3

3 2 1 2 3

4 3 2 2 2

5 4 3 2 3

The cost of subproblem m[3][2] = 1 which is the edit distance of the string “GCT”
and “CT”. As you can see, you only need to delete the first character which validates
this cost is correct. This code only shows how to compute the minimum edit dis‐
tance; to actually record the sequence of operations that would be performed, a
prev[i][j] matrix records which of the three cases was selected when computing the
minimum value of m[i][j]. To recover the operations, trace backwards from
m[len(s1)][len(s2)] using decisions recorded in prev[i][j] stopping once m[0][0] is
reached. This revised implementation is shown in Example 3-4.

Example 3-4. Minimum edit distance with operations solved using Dynamic
Programming

REPLACE = 0
REMOVE  = 1
INSERT  = 2

def minEditDistance(s1, s2):
  """Compute minimum edit distance converting s1 -> s2 with operations."""
  len1 = len(s1)
  len2 = len(s2)

  # Create two-dimensional structure such that m[i][j] = 0
  # for i in 0 .. len1 and for j in 0 .. len2
  m = [None] * (len1 + 1)
  op = [None] * (len1 + 1)
  for i in range(len1+1):
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    m[i] = [0] * (len2+1)
    op[i] = [-1] * (len2+1)

  # set up initial costs on horizontal and vertical
  for j in range(1, len2+1):
    m[0][j] = j
  for i in range(1, len1+1):
    m[i][0] = i

  # compute best
  for i in range(1,len1+1):
    for j in range(1,len2+1):
      cost = 1
      if s1[i-1] == s2[j-1]: cost = 0

      replaceCost = m[i-1][j-1] + cost
      removeCost  = m[i-1][j] + 1
      insertCost  = m[i][j-1] + 1
      costs       = [replaceCost,removeCost,insertCost]
      m[i][j]     = min(costs)
      op[i][j]    = costs.index(m[i][j])

  ops = []
  i = len1
  j = len2
  while i != 0 or j != 0:
    if op[i][j] == REMOVE or j == 0:
      ops.append('remove {}-th char {} of {}'.format(i,s1[i-1],s1))
      i = i-1
    elif op[i][j] == INSERT or i == 0:
      ops.append('insert {}-th char {} of {}'.format(j,s2[j-1],s2))
      j = j-1
    else:
      if m[i-1][j-1] < m[i][j]:
        fmt='replace {}-th char of {} ({}) with {}'
        ops.append(fmt.format(i,s1,s1[i-1],s2[j-1]))
      i,j = i-1,j-1

  return m[len1][len2], ops

References
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4
Sorting Algorithms

Numerous computations and tasks become simple by properly sorting information
in advance. The search for efficient sorting algorithms dominated the early days of
computing. Indeed, much of the early research in algorithms focused on sorting col‐
lections of data that were too large for the computers of the day to store in memory.
Because today’s computers are so much more powerful than the ones of 50 years
ago, the size of the data sets being processed is now on the order of terabytes of
information. Although you may not be called on to sort such huge data sets, you
will likely need to sort large numbers of items. In this chapter, we cover the most
important sorting algorithms and present results from our benchmarks to help you
select the best sorting algorithm to use in each situation.

Terminology
A collection of comparable elements A is presented to be sorted in place; we use
the notations A[i] and ai to refer to the ith element of the collection. By convention,
the first element in the collection is A[0]. We use A[low, low + n) to refer to the sub‐
collection A[low] … A[low + n − 1] of n elements, whereas A[low, low + n] contains
n + 1 elements.

To sort a collection, you must reorganize the elements A such that if A[i] < A[j],
then i < j. If there are duplicate elements, these elements must be contiguous in the
resulting ordered collection—that is, if A[i] = A[j] in a sorted collection, then there
can be no k such that i < k < j and A[i] ≠ A[k]. Finally, the sorted collection A must
be a permutation of the elements that originally formed A.

Representation
The collection may already be stored in the computer’s random access memory
(RAM), but it might simply exist in a file on the filesystem, known as secondary
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storage. The collection may be archived in part on tertiary storage (such as tape
libraries and optical jukeboxes), which may require extra processing time just to
locate the information; in addition, the information may need to be copied to sec‐
ondary storage (such as hard disk drives) before it can be processed.

Information stored in RAM typically takes one of two forms: pointer-based or
value-based. Assume we want to sort the strings “eagle,” “cat,” “ant,” “dog,” and “ball.”
Using pointer-based storage, shown in Figure 4-1, an array of information (i.e., the
contiguous boxes) contains pointers to the actual information (i.e., the strings in
ovals) rather than storing the information itself. Such an approach enables arbitrar‐
ily complex records to be stored and sorted.

Figure 4-1. Sorting using pointer-based storage

By contrast, value-based storage packs a collection of n elements into record blocks
of a fixed size, s, which is better suited for secondary or tertiary storage. Figure 4-2
shows how to store the same information shown in Figure 4-1 using a contiguous
block of storage containing a set of rows of exactly s = 5 bytes each. In this example,
the information is shown as strings, but it could be any collection of structured,
record-based information. The “¬” character represents a padding character that
cannot be part of any string; in this encoding, strings of length s need no padding
character. The information is contiguous and can be viewed as a one-dimensional
array B[0, n*s). Note that B[r*s + c] is the cth letter of the rth word (where c ≥ 0 and
r ≥ 0); also, the ith element of the collection (for i ≥ 0) is the subarray B[i*s,(i + 1)*s).

Information is usually written to secondary storage as a value-based contiguous col‐
lection of bytes. The algorithms in this chapter can also be written to work with
disk-based information simply by implementing swap functions that transpose
bytes within the files on disk; however, the resulting performance will differ because
of the increased input/output costs in accessing secondary storage. Merge Sort is
particularly well-suited for sorting data in secondary storage.

Whether pointer-based or value-based, a sorting algorithm updates the information
(in both cases, the boxes) so that A[0, n) is ordered. For convenience, we use
the A[i] notation to represent the ith element, even when value-based storage is
being used.
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Figure 4-2. Sorting using value-based storage

Comparable Elements
The elements in the collection being compared must admit a total ordering. That is,
for any two elements p and q in a collection, exactly one of the following three pred‐
icates is true: p = q, p < q, or p > q. Commonly sorted primitive types include inte‐
gers, floating-point values, and characters. When composite elements are sorted
(such as strings of characters), lexicographical ordering is imposed on each individ‐
ual element of the composite, thus reducing a complex sort into individual sorts on
primitive types. For example, the word “alphabet” is considered to be less than
“alternate” but greater than “alligator” by comparing each individual letter, from left
to right, until a word runs out of characters or an individual character in one word
is different from its partner in the other word (thus “ant” is less than “anthem”).

This question of ordering is far from simple when considering capitalization (is “A”
greater than “a”?), diacritical marks (is “è” less than “ê”?), and diphthongs (is “æ” less
than “a”?). Note that the powerful Unicode standard uses encodings, such as
UTF-16, to represent each individual character using up to four bytes. The Unicode
Consortium has developed a sorting standard (known as “the collation algorithm”)
that handles the wide variety of ordering rules found in different languages and cul‐
tures (Davis and Whistler, 2008).

The algorithms presented in this chapter assume you can provide a comparator
function, cmp, which compares element p to q and returns 0 if p = q, a negative
number if p < q, and a positive number if p > q. If the elements are complex records,
the cmp function might only compare a “key” value of the elements. For example, an
airport terminal might list outbound flights in ascending order of destination city or
departure time while flight numbers appear to be unordered.

Stable Sorting
When the comparator function cmp determines that two elements, ai and aj, in the
original unordered collection are equal, it may be important to maintain their rela‐
tive ordering in the sorted set—that is, if i < j, then the final location for ai must be
to the left of the final location for aj. Sorting algorithms that guarantee this property
are considered to be stable. For example, the left four columns of Table 4-1 show an
original collection of flight information already sorted by time of flight during the
day (regardless of airline or destination city). If a stable sort orders this collection
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using a comparator function that orders flights by destination city, the only possible
result is shown in the right four columns of Table 4-1.

Table 4-1. Stable sort of airport terminal information

Destination Airline Flight Departure
Time
(Ascending)

→ Destination
(Ascending)

Airline Flight Departure
Time

Buffalo Air Trans 549 10:42 AM Albany Southwest 482 1:20 PM

Atlanta Delta 1097 11:00 AM Atlanta Delta 1097 11:00 AM

Baltimore Southwest 836 11:05 AM Atlanta Air Trans 872 11:15 AM

Atlanta Air Trans 872 11:15 AM Atlanta Delta 28 12:00 PM

Atlanta Delta 28 12:00 PM Atlanta Al Italia 3429 1:50 PM

Boston Delta 1056 12:05 PM Austin Southwest 1045 1:05 PM

Baltimore Southwest 216 12:20 PM Baltimore Southwest 836 11:05 AM

Austin Southwest 1045 1:05 PM Baltimore Southwest 216 12:20 PM

Albany Southwest 482 1:20 PM Baltimore Southwest 272 1:40 PM

Boston Air Trans 515 1:21 PM Boston Delta 1056 12:05 PM

Baltimore Southwest 272 1:40 PM Boston Air Trans 515 1:21 PM

Atlanta Al Italia 3429 1:50 PM Buffalo Air Trans 549 10:42 AM

You will note that all flights that have the same destination city are also sorted by
their scheduled departure time; thus, the sort algorithm exhibited stability on this
collection. An unstable algorithm pays no attention to the relationships between
element locations in the original collection (it might maintain relative ordering, but
it also might not).

Criteria for Choosing a Sorting Algorithm
To choose the sorting algorithm to use or implement, consider the qualitative crite‐
ria in Table 4-2.

Table 4-2. Criteria for choosing a sorting algorithm

Criteria Sorting algorithm

Only a few items Insertion Sort

Items are mostly sorted already Insertion Sort

Concerned about worst-case scenarios Heap Sort

Interested in a good average-case behavior Quicksort

Items are drawn from a uniform dense universe Bucket Sort
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Criteria Sorting algorithm

Desire to write as little code as possible Insertion Sort

Require stable sort Merge Sort

Transposition Sorting
Early sorting algorithms found elements in the collection A that were out of place
and moved them into their proper position by transposing (or swapping) elements
in A. Selection Sort and (the infamous) Bubble Sort belong to this sorting family.
But these algorithms are outperformed by Insertion Sort, which we now present.

Insertion Sort
Insertion Sort repeatedly invokes an insert helper function to ensure A[0, i] is
properly sorted; eventually, i reaches the rightmost element, sorting A entirely.

Insertion Sort Summary
Best: O(n)    Average, Worst: O(n2)

sort (A)
  for pos = 1 to n-1 do
    insert (A, pos, A[pos])
end

insert (A, pos, value)
  i = pos - 1

  while i >= 0 and A[i] > value do 
    A[i+1] = A[i]
    i = i-1

  A[i+1] = value 
end

Shifts elements greater than value to the right.

Inserts value into proper location.

Figure 4-3 shows how Insertion Sort operates on an unordered collection A of size
n = 16. The 15 rows that follow depict the state of A after each invocation of insert.

A is sorted in place by incrementing pos = 1 up to n − 1 and inserting the element
A[pos] into its rightful position in the growing sorted region A[0, pos], demarcated
on the right by a bold vertical line. The elements shaded in gray were shifted to the
right to make way for the inserted element; in total, Insertion Sort executed 60
neighboring transpositions (a movement of just one place by an element).
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Context
Use Insertion Sort when you have a small number of elements to sort or the ele‐
ments in the initial collection are already “nearly sorted.” Determining when the
array is “small enough” varies from one machine to another and by programming
language. Indeed, even the type of element being compared may be significant.

Figure 4-3. The progression of Insertion Sort on a small array

Solution
When the information is stored using pointers, the C program in Example 4-1 sorts
an array ar of items that can be compared using a comparison function, cmp.

Example 4-1. Insertion Sort with pointer-based values

void sortPointers (void **ar, int n,
                   int (*cmp)(const void *, const void *)) {
  int j;
  for (j = 1; j < n; j++) {
    int i = j-1;
    void *value = ar[j];
    while (i >= 0 && cmp (ar[i], value) > 0) {
      ar[i+1] = ar[i];
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      i--;
    }

   ar[i+1] = value;
  }
}

When A is represented using value-based storage, it is packed into n rows of a fixed
element size of s bytes. Manipulating the values requires a comparison function as
well as the means to copy values from one location to another. Example 4-2 shows a
suitable C program that uses memmove to transfer the underlying bytes efficiently for
a set of contiguous entries in A.

Example 4-2. Insertion Sort using value-based information

void sortValues (void *base, int n, int s,
                 int (*cmp)(const void *, const void *)) {
  int j;
  void *saved = malloc (s);
  for (j = 1; j < n; j++) {
    int i = j-1;
    void *value = base + j*s;
    while (i >= 0 && cmp (base + i*s, value) > 0) { i--; }

    /* If already in place, no movement needed. Otherwise save value
     * to be inserted and move intervening values as a LARGE block.
     * Then insert into proper position. */
    if (++i == j) continue;

    memmove (saved, value, s);
    memmove (base+(i+1)*s, base+i*s, s*(j-i));
    memmove (base+i*s, saved, s);
  }
  free (saved);
}

The optimal performance occurs when the array is already sorted, and arrays sorted
in reverse order produce the worst performance for Insertion Sort. If the array is
already mostly sorted, Insertion Sort does well because there is less need to trans‐
pose elements.

Insertion Sort requires very little extra space to function; it only needs to reserve
space for a single element. For value-based representations, most language libraries
offer a block memory move function to make transpositions more efficient.

Analysis
In the best case, each of the n items is in its proper place and thus Insertion Sort
takes linear time, or O(n). This may seem to be a trivial point to raise (how often are
you going to sort a set of already sorted elements?), but it is important because
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Insertion Sort is the only comparison-based sorting algorithm that has this best-
case behavior.

Much real-world data is already partially sorted, so optimism and realism might
coincide to make Insertion Sort an effective algorithm to use. The efficiency of
Insertion Sort increases when duplicate items are present, since there are fewer
swaps to perform.

Unfortunately, Insertion Sort is too conservative when all n items are distinct and
the array is randomly organized (i.e., all permutations of the data are equally likely)
because each item starts on average n/3 positions in the array from its final position.
The program numTranspositions.c in the code repository empirically validates this
claim for small n up to 12 (also see Trivedi, 2001). In the average and worst case,
each of the n items must be transposed a linear number of positions, thus Insertion
Sort requires O(n2) quadratic time.

Insertion Sort operates inefficiently for value-based data because of the amount of
memory that must be shifted to make room for a new value. Table 4-3 contains
direct comparisons between a naïve implementation of value-based Insertion Sort
and the implementation from Example 4-2. Ten random trials of sorting n elements
were conducted, and the best and worst results were discarded. This table shows the
average of the remaining eight runs. Note how the implementation improves by
using a block memory move rather than individual memory swapping. Still, as the
array size doubles, the performance time approximately quadruples, validating the
O(n2) behavior of Insertion Sort. Even with the bulk move improvement, Insertion
Sort still remains quadratic.

Table 4-3. Insertion Sort bulk move versus Insertion Sort (in seconds)

n Insertion Sort
bulk move (Bn)

Naïve Insertion
Sort (Sn)

1,024 0.0039 0.0130

2,048 0.0153 0.0516

4,096 0.0612 0.2047

8,192 0.2473 0.8160

16,384 0.9913 3.2575

32,768 3.9549 13.0650

65,536 15.8722 52.2913

131,072 68.4009 209.2943

When Insertion Sort operates over pointer-based input, swapping elements is more
efficient; the compiler can even generate optimized code to minimize costly mem‐
ory accesses.
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Selection Sort
One common sorting strategy is to select the largest value from the range A[0, n)
and swap its location with the rightmost element A[n – 1]. This process is repeated,
subsequently, on each successive smaller range A[0, n – 1) until A is sorted. We dis‐
cussed Selection Sort in Chapter 3 as an example of a Greedy approach.
Example 4-3 contains a C implementation.

Example 4-3. Selection Sort implementation in C

static int selectMax (void **ar, int left, int right,
                      int (*cmp)(const void *, const void *)) {
  int  maxPos = left;
  int  i = left;
  while (++i <= right) {
    if (cmp(ar[i], ar[maxPos]) > 0) {
      maxPos = i;
    }
  }

  return maxPos;
}

void sortPointers (void **ar, int n,
                   int (*cmp)(const void *, const void *)) {
  /* repeatedly select max in ar[0,i] and swap with proper position */
  int i;
  for (i = n-1; i >= 1; i--) {
    int maxPos = selectMax (ar, 0, i, cmp);
    if (maxPos != i) {
      void *tmp = ar[i];
      ar[i] = ar[maxPos];
      ar[maxPos] = tmp;
    }
  }
}

Selection Sort is the slowest of all the sorting algorithms described in this chapter;
it requires quadratic time even in the best case (i.e., when the array is already sor‐
ted). It repeatedly performs almost the same task without learning anything from
one iteration to the next. Selecting the largest element, max, in A takes n – 1 com‐
parisons, and selecting the second largest element, second, takes n – 2 comparisons
—not much progress! Many of these comparisons are wasted, because if an element
is smaller than second, it can’t possibly be the largest element and therefore has no
impact on the computation for max. Instead of presenting more details on this
poorly performing algorithm, we now consider Heap Sort, which shows how to
more effectively apply the principle behind Selection Sort.
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Heap Sort
We always need at least n − 1 comparisons to find the largest element in an unor‐
dered array A of n elements, but can we minimize the number of elements that are
compared directly? For example, sports tournaments find the “best” team from a
field of n teams without forcing the ultimate winner to play all other n − 1 teams.
One of the most popular basketball events in the United States is the NCAA cham‐
pionship tournament, where essentially a set of 64 college teams compete for the
national title. The ultimate champion team plays five teams before reaching the final
determining game, and so that team must win six games. It is no coincidence that
6 = log (64). Heap Sort shows how to apply this behavior to sort a set of elements.

Heap Sort Summary
Best, Average, Worst: O(n log n)

sort (A)
  buildHeap (A)
  for i = n-1 downto 1 do
    swap A[0] with A[i]
    heapify (A, 0, i)
end

buildHeap (A)
  for i = n/2-1 downto 0 do
    heapify (A, i, n)
end

# Recursively enforce that A[idx,max) is valid heap
heapify (A, idx, max)

  largest = idx 
  left = 2*idx + 1
  right = 2*idx + 2

  if left < max and A[left] > A[idx] then

    largest = left 
  if right < max and A[right] > A[largest] then

    largest = right 
  if largest ≠ idx then
    swap A[idx] and A[largest]
    heapify (A, largest, max)
end

Assume parent A[idx] is larger than or equal to either of its children.

Left child is larger than its parent.

Right child is larger than either its parent or left sibling.

Figure 4-4 shows the execution of buildHeap on an array of six values.
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Figure 4-4. Heap Sort example

A heap is a binary tree whose structure ensures two properties:

Shape property
A leaf node at depth k > 0 can exist only if all 2k−1 nodes at depth k − 1 exist.
Additionally, nodes at a partially filled level must be added “from left to right.”
The root node has a depth of 0.

Heap property
Each node in the tree contains a value greater than or equal to either of its two
children, if it has any.

The sample heap in Figure 4-5(a) satisfies these properties. The root of the binary
tree contains the largest element in the tree; however, the smallest element can be
found in any leaf node. Although a heap only ensures a node is greater than either
of its children, Heap Sort shows how to take advantage of the shape property to
efficiently sort an array of elements.
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Figure 4-5. (a) Sample heap of 16 unique elements; (b) labels of these elements;
(c) heap stored in an array

Given the rigid structure imposed by the shape property, a heap can be stored in an
array A without losing any of its structural information. Figure 4-5(b) shows an
integer label assigned to each node in the heap. The root is labeled 0. For a node
with label i, its left child (should it exist) is labeled 2*i + 1; its right child (should it
exist) is labeled 2*i + 2. Similarly, for a non-root node labeled i, its parent node is
labeled ⌊(i – 1)/2⌋. Using this labeling scheme, we can store the heap in an array by
storing the element value for a node in the array position identified by the node’s
label. The array shown in Figure 4-5(c) represents the heap shown in Figure 4-5(a).
The order of the elements within A can be simply read from left to right as deeper
levels of the tree are explored.

Heap Sort sorts an array, A, by first converting that array in place into a heap using
buildHeap which makes repeated calls to heapify. heapify(A, i, n) updates the
array, A, to ensure that the tree structure rooted at A[i] is a valid heap. Figure 4-6
shows details of the invocations of heapify that convert an unordered array into a
heap. The progress of buildHeap on an already sorted array is shown in Figure 4-6.
Each numbered row in this figure shows the result of executing heapify on the ini‐
tial array from the midway point of ⌊(n/2)⌋ − 1 down to the leftmost index 0.

As you can see, large numbers are eventually “lifted up” in the resulting heap (which
means they are swapped in A with smaller elements to the left). The grayed squares
in Figure 4-6 depict the element pairs swapped in heapify—a total of 13—which is
far fewer than the total number of elements swapped in Insertion Sort as depicted
in Figure 4-3.
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Figure 4-6. buildHeap processing an initially sorted array

Heap Sort processes an array A of size n by treating it as two distinct subarrays,
A[0, m) and A[m, n), which represent a heap of size m and a sorted subarray of
n – m elements, respectively. As i iterates from n − 1 down to 1, Heap Sort grows
the sorted subarray A[i, n) downward by swapping the largest element in the heap
(at position A[0]) with A[i]; it then reconstructs A[0, i) to be a valid heap by execut‐
ing heapify. The resulting nonempty subarray A[i, n) will be sorted because the
largest element in the heap represented in A[0, i) is guaranteed to be smaller than or
equal to any element in the sorted subarray A[i, n).

Context
Heap Sort is not a stable sort. Heap Sort avoids many of the nasty (almost embar‐
rassing!) cases that cause Quicksort to perform badly. Nonetheless, in the average
case, Quicksort outperforms Heap Sort.

Solution
A sample implementation in C is shown in Example 4-4.

Example 4-4. Heap Sort implementation in C

static void heapify (void **ar, int (*cmp)(const void *, const void *),
                     int idx, int max) {
  int left = 2*idx + 1;
  int right = 2*idx + 2;
  int largest;
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  /* Find largest element of A[idx], A[left], and A[right]. */
  if (left < max && cmp (ar[left], ar[idx]) > 0) {
    largest = left;
  } else {
    largest = idx;
  }

  if (right < max && cmp (ar[right], ar[largest]) > 0) {
    largest = right;
  }

  /* If largest is not already the parent then swap and propagate. */
  if (largest != idx) {
    void *tmp;
    tmp = ar[idx];
    ar[idx] = ar[largest];
    ar[largest] = tmp;

    heapify (ar, cmp, largest, max);
   }
}

static void buildHeap (void **ar,
                       int (*cmp)(const void *, const void *), int n) {
  int i;
  for (i = n/2-1; i>=0; i--) {
    heapify (ar, cmp, i, n);
  }
}

void sortPointers (void **ar, int n,
                   int (*cmp)(const void *, const void *)) {
  int i;
  buildHeap (ar, cmp, n);
  for (i = n-1; i >= 1; i--) {
    void *tmp;
    tmp = ar[0];
    ar[0] = ar[i];
    ar[i] = tmp;

    heapify (ar, cmp, 0, i);
  }
}

Analysis
heapify is the central operation in Heap Sort. In buildHeap, it is called ⌊(n/2)⌋ − 1
times, and during the actual sort it is called n − 1 times, for a total of ⌊(3*n/2)⌋ − 2
times. Because of the shape property, the depth of the heap will always be ⌊ log n ⌋
where n is the number of elements in the heap. As you can see, it is a recursive oper‐
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ation with no more than log n recursive calls until the heap is corrected or the end of
the heap is reached. However, heapify will stop prematurely once the heap is cor‐
rected; as it turns out, no more than 2*n comparisons are needed in total (Cormen
et al., 2009), which means that buildHeap behaves in linear time or O(n).

Variations
The code repository contains a nonrecursive Heap Sort implementation and
Table 4-4 presents a benchmark comparison of running 1,000 randomized trials of
both implementations, discarding the best and worst performances of each.

Table 4-4. Comparing Heap Sort versus nonrecursive Heap Sort (in seconds)

n Nonrecursive
Heap Sort

Recursive
Heap Sort

16,384 0.0048 0.0064

32,768 0.0113 0.0147

65,536 0.0263 0.0336

131,072 0.0762 0.0893

262,144 0.2586 0.2824

524,288 0.7251 0.7736

1,048,576 1.8603 1.9582

2,097,152 4.566 4.7426

At first, there is a noticeable improvement in eliminating recursion in Heap Sort,
but this difference reduces as n increases.

Partition-Based Sorting
A Divide and Conquer strategy solves a problem by dividing it into two independ‐
ent subproblems, each about half the size of the original problem. You can apply this
strategy to sorting as follows: find the median element in the collection A and swap
it with the middle element of A. Now swap elements in the left half that are greater
than A[mid] with elements in the right half that are less than or equal to A[mid].
This subdivides the original array into two distinct subarrays that can be recursively
sorted in place to sort the original collection A.

Implementing this approach is challenging because it might not be obvious how to
compute the median element of a collection without sorting the collection first! It
turns out that you can use any element in A to partition A into two subarrays; if you
choose “wisely” each time, then both subarrays will be more or less the same size
and you will achieve an efficient implementation.
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Assume there is a function p = partition (A, left, right, pivotIndex) that uses a special
pivot value in A, A[pivotIndex], to modify A and return the location p in A such that:

• A[p] = pivot
• All elements in A[left, p) are less than or equal to pivot
• All elements in A[p + 1, right] are greater than pivot

If you are lucky, when partition completes, the size of these two subarrays are more
or less half the size of the original collection. Example 4-5 shows a C implementa‐
tion of partition.

Example 4-5. C implementation to partition ar[left,right] around a given pivot
element

/**
 * In linear time, group the subarray ar[left, right] around a pivot
 * element pivot=ar[pivotIndex] by storing pivot into its proper
 * location, store, within the subarray (whose location is returned
 * by this function) and ensuring all ar[left,store) <= pivot and
 * all ar[store+1,right] > pivot.
 */
int partition (void **ar, int (*cmp)(const void *, const void *),
               int left, int right, int pivotIndex) {
  int idx, store;
  void *pivot = ar[pivotIndex];

  /* move pivot to the end of the array */
  void *tmp = ar[right];
  ar[right] = ar[pivotIndex];
  ar[pivotIndex] = tmp;

  /* all values <= pivot are moved to front of array and pivot inserted
   * just after them. */
  store = left;
  for (idx = left; idx < right; idx++) {
    if (cmp (ar[idx], pivot) <= 0) {
      tmp = ar[idx];
      ar[idx] = ar[store];
      ar[store] = tmp;
      store++;
    }
  }

  tmp = ar[right];
  ar[right] = ar[store];
  ar[store] = tmp;
  return store;
}
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The Quicksort algorithm, introduced by C. A. R. Hoare in 1960, selects an element
in the collection (sometimes randomly, sometimes the leftmost, sometimes the mid‐
dle one) to partition an array into two subarrays. Thus, Quicksort has two steps.
First, the array is partitioned and then each subarray is recursively sorted.

Quicksort Summary
Best, Average: O(n log n), Worst: O(n2)

sort (A)
  quicksort (A, 0, n-1)
end

quicksort (A, left, right)
  if left < right then
    pi = partition (A, left, right)
    quicksort (A, left, pi-1)
    quicksort (A, pi+1, right)
end

This pseudocode intentionally doesn’t specify the strategy for selecting the pivot
index. In the associated code, we assume there is a selectPivotIndex function that
selects an appropriate index. We do not cover here the advanced mathematical ana‐
lytic tools needed to prove that Quicksort offers O(n log n) average behavior; fur‐
ther details on this topic are available in Cormen (2009).

Figure 4-7 shows Quicksort in action. Each of the black squares represents a pivot
selection. The first pivot selected is “2,” which turns out to be a poor choice since it
produces two subarrays of size 1 and size 14. During the next recursive invocation
of Quicksort on the right subarray, “12” is selected to be the pivot (shown in the
fourth row down), which produces two subarrays of size 9 and 4, respectively.
Already you can see the benefit of using partition since the last four elements in the
array are, in fact, the largest four elements, although they are still unordered.
Because of the random nature of the pivot selection, different behaviors are possi‐
ble. In a different execution, shown in Figure 4-8, the first selected pivot nicely sub‐
divides the problem into two more or less comparable tasks.

Context
Quicksort exhibits worst-case quadratic behavior if the partitioning at each recur‐
sive step only divides a collection of n elements into an “empty” and “large” set,
where one of these sets has no elements and the other has n − 1 (note that the pivot
element provides the last of the n elements, so no element is lost).
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Figure 4-7. Sample Quicksort execution

Solution
The Quicksort implementation shown in Example 4-6 includes standard optimiza‐
tion to use Insertion Sort when the size of the subarray to be sorted falls below a
predetermined minimum size.
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Example 4-6. Quicksort implementation in C

/**
 * Sort array ar[left,right] using Quicksort method.
 * The comparison function, cmp, is needed to properly compare elements.
 */
void do_qsort (void **ar, int (*cmp)(const void *, const void *),
               int left, int right) {
  int pivotIndex;
  if (right <= left) { return; }

  /* partition */
  pivotIndex = selectPivotIndex (ar, left, right);
  pivotIndex = partition (ar, cmp, left, right, pivotIndex);

  if (pivotIndex-1-left <= minSize) {
    insertion (ar, cmp, left, pivotIndex-1);
  } else {
    do_qsort (ar, cmp, left, pivotIndex-1);
  }
  if (right-pivotIndex-1 <= minSize) {
    insertion (ar, cmp, pivotIndex+1, right);
  } else {
    do_qsort (ar, cmp, pivotIndex+1, right);
  }
}

/**  Qsort straight */
void sortPointers (void **vals, int total_elems,
                   int (*cmp)(const void *, const void *)) {
  do_qsort (vals, cmp, 0, total_elems-1);
}

The external method selectPivotIndex(ar, left, right) chooses the pivot value
on which to partition the array.

Analysis
Surprisingly, using a random element as pivot enables Quicksort to provide an
average-case performance that usually outperforms other sorting algorithms. In
addition, there are numerous enhancements and optimizations researched for
Quicksort that have achieved the most efficiency out of any sorting algorithm.

In the ideal case, partition divides the original array in half and Quicksort exhib‐
its O(n log n) performance. In practice, Quicksort is effective with a randomly
selected pivot.

In the worst case, the largest or smallest item is picked as the pivot. When this hap‐
pens, Quicksort makes a pass over all elements in the array (in linear time) to sort
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just a single item in the array. If this process is repeated n − 1 times, it will result in
O(n2) worst-case behavior.

Figure 4-8. A different Quicksort behavior

Variations
Quicksort is the sorting method of choice on most systems. On Unix-based sys‐
tems, there is a built-in library function called qsort. Often, the operating system
uses optimized versions of the default Quicksort algorithm. Two of the commonly
cited sources for optimizations are by Sedgewick (1978) and Bentley and McIlroy
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(1993). It is instructive that some versions of the Linux operating system implement
qsort using Heap Sort.

Various optimizations include:

• Create a stack that stores the subtasks to be processed to eliminate recursion
• Choose the pivot based on median-of-three strategy
• Set the minimum partition size below which to use Insertion Sort instead

which varies by implementation and machine architecture; in JDK 1.8, the
threshold value is set to 7

• When processing the two subproblems, minimize the total size of the recursive
stack by solving the smaller subproblem first

However, none of these optimizations will eliminate the O(n2) worst-case behavior
of Quicksort. The only way to ensure an O(n log n) worst-case performance is to
use a partition function that can guarantee it finds a “reasonable approximation” to
the actual median of that set. The Blum-Floyd-Pratt-Rivest-Tarjan (BFPRT) parti‐
tion algorithm (Blum et al., 1973) is a provably linear time algorithm, but it has
only theoretical value. An implementation of BFPRT is provided with the code
repository.

Picking a pivot
Selecting the pivot element from a subarray A[left, left + n) must be an efficient
operation; it shouldn’t require checking all n elements of the subarray. Some alterna‐
tives are:

• Select first or last: A[left] or A[left + n − 1]
• Select random element in A[left, left + n − 1]
• Select median-of-k: the middle value of k elements taken from A[left, left + n −

1]

Often one chooses median-of-three; Sedgewick reports that this approach returns
an improvement of 5%, but note that some arrangements of data will force even this
alternative into subpar performance (Musser, 1997). A median-of-five pivot selec‐
tion has also been used. Performing further computation to identify the proper
pivot rarely provides beneficial results because of the extra computational costs.

Processing the partition
In the partition method shown in Example 4-5, elements less than or equal to the
selected pivot are inserted toward the front of the subarray. This approach might
skew the size of the subarrays for the recursive step if the selected pivot has many
duplicate elements in the array. One way to reduce the imbalance is to place ele‐
ments equal to the pivot alternatively in the first and second subarrays.
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Processing subarrays
Quicksort yields two recursive invocations of Quicksort on smaller subarrays.
While processing one, the activation record of the other is pushed onto the execu‐
tion stack. If the larger subarray is processed first, it is possible to have a linear
number of activation records on the stack at the same time (although modern com‐
pilers may eliminate this observed overhead). To minimize the possible depth of the
stack, process the smaller subarray first. If the depth of the recursion is a foreseeable
issue, then perhaps Quicksort is not appropriate for your application.

Using simpler insertion sort technique for small subarrays
On small arrays, Insertion Sort is faster than Quicksort, but even when used on
large arrays, Quicksort ultimately decomposes the problem to require numerous
small subarrays to be sorted. One commonly used technique to improve the recur‐
sive performance of Quicksort is to invoke Quicksort for large subarrays only, and
use Insertion Sort for small ones, as shown in Example 4-6.

Sedgewick (1978) suggests that a combination of median-of-three and using Inser‐
tion Sort for small subarrays offers a speedup of 20%–25% over pure Quicksort.

IntroSort
Switching to Insertion Sort for small subarrays is a local decision that is made
based upon the size of the subarray. Musser (1997) introduced a Quicksort varia‐
tion called IntroSort, which monitors the recursive depth of Quicksort to ensure
efficient processing. If the depth of the Quicksort recursion exceeds log (n) levels,
then IntroSort switches to Heap Sort. The SGI implementation of the C++ Stan‐
dard Template Library uses IntroSort as its default sorting mechanism.

Sorting without Comparisons
At the end of this chapter, we will show that no comparison-based sorting algorithm
can sort n elements in better than O(n log n) performance. Surprisingly, there are
potentially faster ways to sort elements if you know something about those elements
in advance. For example, if you have a fast hashing function that uniformly parti‐
tions a collection of elements into distinct, ordered buckets, you can use the follow‐
ing Bucket Sort algorithm for linear O(n) performance.

Bucket Sort
Given a set of n elements, Bucket Sort constructs a set of n ordered buckets into
which the elements of the input set are partitioned; Bucket Sort reduces its process‐
ing costs at the expense of this extra space. If a hash function, hash(A[i]), can uni‐
formly partition the input set of n elements into these n buckets, Bucket Sort can
sort, in the worst case, in O(n) time. Use Bucket Sort when the following two prop‐
erties hold:
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Uniform distribution
The input data must be uniformly distributed for a given range. Based on this
distribution, n buckets are created to evenly partition the input range.

Ordered hash function
The buckets are ordered. If i < j, elements inserted into bucket bi are lexico‐
graphically smaller than elements in bucket bj.

Bucket Sort Summary
Best, Average, Worst: O(n)

sort (A)
  create n buckets B

  for i = 0 to n-1 do 
    k = hash(A[i])
    add A[i] to the k-th bucket B[k]

  extract (B, A) 
end

extract (B, A)
  idx = 0
  for i = 0 to n-1 do

    insertionSort (B[i]) 

    foreach element e in B[i] 
      A[idx++] = e
end

Create bucket list and hash all elements to proper bucket.

Process all buckets to extract values back into A in sorted order.

If more than one element in bucket, sort first.

Copy elements back into proper position in A.

Bucket Sort is not appropriate for sorting arbitrary strings, for example, because
typically it is impossible to develop a hash function with the required characteris‐
tics. However, it could be used to sort a set of uniformly distributed floating-point
numbers in the range [0, 1).

Once all elements to be sorted are inserted into the buckets, Bucket Sort extracts
the values from left to right using Insertion Sort on the contents of each bucket.
This orders the elements in each respective bucket as the values from the buckets
are extracted from left to right to repopulate the original array. An example execu‐
tion is shown in Figure 4-9.
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Figure 4-9. Small example demonstrating Bucket Sort

Solution
In the C implementation for Bucket Sort, shown in Example 4-7, each bucket stores
a linked list of elements that were hashed to that bucket. The functions numBuckets
and hash are provided externally, based upon the input set.

Example 4-7. Bucket Sort implementation in C

extern int hash (void *elt);
extern int numBuckets (int numElements);

/* linked list of elements in bucket. */
typedef struct entry {
  void          *element;
  struct entry  *next;
} ENTRY;

/* maintain count of entries in each bucket and pointer to its first entry */
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typedef struct {
  int        size;
  ENTRY      *head;
} BUCKET;

/* Allocation of buckets and the number of buckets allocated */
static BUCKET *buckets = 0;
static int num = 0;

/** One by one remove and overwrite ar */
void extract (BUCKET *buckets, int (*cmp)(const void *, const void *),
              void **ar, int n) {
  int i, low;
  int idx = 0;
  for (i = 0; i < num; i++) {
    ENTRY *ptr, *tmp;
    if (buckets[i].size == 0) continue;   /* empty bucket */

    ptr = buckets[i].head;
    if (buckets[i].size == 1) {
      ar[idx++] = ptr->element;
      free (ptr);
      buckets[i].size = 0;
      continue;
    }

    /* insertion sort where elements are drawn from linked list and
     * inserted into array. Linked lists are released. */
    low = idx;
    ar[idx++] = ptr->element;
    tmp = ptr;
    ptr = ptr->next;
    free (tmp);

    while (ptr != NULL) {
     int i = idx-1;
     while (i >= low && cmp (ar[i], ptr->element) > 0) {
        ar[i+1] = ar[i];
        i--;
      }
      ar[i+1] = ptr->element;
      tmp = ptr;
      ptr = ptr->next;
      free (tmp);
      idx++;
    }
    buckets[i].size = 0;
  }
}

void sortPointers (void **ar, int n,
                   int (*cmp)(const void *, const void *)) {
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  int i;
  num = numBuckets (n);
  buckets = (BUCKET *) calloc (num, sizeof (BUCKET));
  for (i = 0; i < n; i++) {
    int k = hash(ar[i]);

    /** Insert each element and increment counts */
    ENTRY *e = (ENTRY *) calloc (1, sizeof (ENTRY));
    e->element = ar[i];
    if (buckets[k].head == NULL) {
      buckets[k].head = e;
    } else {
      e->next = buckets[k].head;
      buckets[k].head = e;
    }

    buckets[k].size++;
  }

  /* now sort, read out, and overwrite ar. */
  extract (buckets, cmp, ar, n);

  free (buckets);
}

For numbers drawn uniformly from [0, 1), Example 4-8 contains sample implemen‐
tations of the hash and numBuckets functions to use.

Example 4-8. Hash and numBuckets functions for [0, 1) range

static int num;

/** Number of buckets to use is the same as the number of elements. */
int numBuckets (int numElements) {
  num = numElements;
  return numElements;
}

/**
 * Hash function to identify bucket number from element. Customized
 * to properly encode elements in order within the buckets. Range of
 * numbers is from [0, 1), so we subdivide into buckets of size 1/num;
 */
int hash (double *d) {
  int bucket = num*(*d);
  return bucket;
}

The buckets could also be stored using fixed arrays that are reallocated when the
buckets become full, but the linked list implementation is about 30%–40% faster.
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Analysis
The sortPointers function of Example 4-7 sorts each element from the input into
its associated bucket based upon the provided hash function; this takes O(n) time.
Because of the careful design of the hash function, we know that all elements in
bucket bi are smaller than the elements in bucket bj if i < j.

As the values are extracted from the buckets and written back into the input array,
Insertion Sort is used when a bucket contains more than a single element.
For Bucket Sort to exhibit O(n) behavior, we must guarantee that the total time to
sort each of these buckets is also O(n). Let’s define ni to be the number of elements
partitioned in bucket bi. We can treat ni as a random variable (using statistical
theory). Now consider the expected value E[ni] for each bucket bi. Each element in
the input set has probability p = 1/n of being inserted into a given bucket because
each of these elements is uniformly drawn from the range [0, 1). Therefore, E[ni] =
n*p = n*(1/n) = 1, while the variance Var[ni] = n*p*(1 – p) = (1 – 1/n). It is impor‐
tant to consider the variance because some buckets will be empty, and others may
have more than one element; we need to be sure that no bucket has too many ele‐
ments. Once again, we resort to statistical theory, which provides the following
equation for random variables:

E[ni
2] = Var[ni] + E2[ni]

From this equation we can compute the expected value of ni
2. This is critical because

it is the factor that determines the cost of Insertion Sort, which runs in a worst case
of O(n2). We compute E[ni

2] = (1 – 1/n) + 1 = (2 – 1/n), which shows that E[ni
2] can

be considered a constant. This means that when we sum up the costs of executing
Insertion Sort on all n buckets, the expected performance cost remains O(n).

Variations
Instead of creating n buckets, Hash Sort creates a suitably large number of buckets
k into which the elements are partitioned; as k grows in size, the performance of
Hash Sort improves. The key to Hash Sort is a hashing function hash(e) that
returns an integer for each element e such that hash(ai) ≤ hash(aj) if ai is lexico‐
graphically smaller than aj.

The hash function hash(e) defined in Example 4-9 operates over elements contain‐
ing just lowercase letters. It converts the first three characters of the string (using
base 26 representation) into an integer value; for the string “abcdefgh,” its first three
characters (“abc”) are extracted and converted into the value 0*676 + 1*26 + 2 = 28.
This string is thus inserted into the bucket labeled 28.
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Example 4-9. hash and numBuckets functions for Hash Sort

/** Number of buckets to use. */
int numBuckets (int numElements) {
  return 26*26*26;
}

/**
 * Hash function to identify bucket number from element. Customized
 * to properly encode elements in order within the buckets.
 */
int hash (void *elt) {
  return (((char*)elt)[0] - 'a')*676 +
         (((char*)elt)[1] - 'a')*26 +
         (((char*)elt)[2] - 'a');
}

The performance of Hash Sort for various bucket sizes and input sets is shown in
Table 4-5. We show comparable sorting times for Quicksort using the median-of-
three approach for selecting the pivotIndex.

Table 4-5. Sample performance for Hash Sort with different numbers of
buckets, compared with Quicksort (in seconds)

n 26 buckets 676 buckets 17,576 buckets Quicksort

16 0.000005 0.000010 0.000120 0.000004

32 0.000006 0.000012 0.000146 0.000005

64 0.000011 0.000016 0.000181 0.000009

128 0.000017 0.000022 0.000228 0.000016

256 0.000033 0.000034 0.000249 0.000033

512 0.000074 0.000061 0.000278 0.000070

1,024 0.000183 0.000113 0.000332 0.000156

2,048 0.000521 0.000228 0.000424 0.000339

4,096 0.0016 0.000478 0.000646 0.000740

8,192 0.0058 0.0011 0.0011 0.0016

16,384 0.0224 0.0026 0.0020 0.0035

32,768 0.0944 0.0069 0.0040 0.0076

65,536 0.4113 0.0226 0.0108 0.0168

131,072 1.7654 0.0871 0.0360 0.0422
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Note that with 17,576 buckets, Hash Sort outperforms Quicksort for n > 8,192
items (and this trend continues with increasing n). However, with only 676 buckets,
once n > 32,768 (for an average of 48 elements per bucket), Hash Sort begins its
inevitable slowdown with the accumulated cost of executing Insertion Sort on
increasingly larger sets. Indeed, with only 26 buckets, once n > 256, Hash Sort
begins to quadruple its performance as the problem size doubles, showing how too
few buckets leads to O(n2) performance.

Sorting with Extra Storage
Most sorting algorithms sort a collection in place without requiring any noticeable
extra storage. We now present Merge Sort, which offers O(n log n) behavior in the
worst case while using O(n) extra storage. It can be used to efficiently sort data that
is stored externally in a file.

Merge Sort
To sort a collection A, divide it evenly into two smaller collections, each of which is
then sorted. A final phase merges these two sorted collections back into a single col‐
lection of size n. A naïve implementation of this approach, shown here, uses far too
much extra storage:

sort (A)
  if A has less than 2 elements then
    return A
  else if A has 2 elements then
    swap elements of A if out of order
    return A

  sub1 = sort(left half of A)
  sub2 = sort(right half of A)

  merge sub1 and sub2 into new array B
  return B
end

Each recursive call of sort will require space equivalent to the size of the array, or
O(n), and there will be O(log n) such recursive calls; thus the storage requirement
for this naïve implementation is O(n log n). Fortunately there is a way to use only
O(n) storage, as we now discuss.

Input/Output
The output of the sort is returned in place within the original collection A. The
internal storage copy is discarded.
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Merge Sort Summary
Best, Average, Worst: O(n log n)

sort (A)

  copy = copy of A 
  mergeSort (copy, A, 0, n)
end

mergeSort (A, result, start, end) 
  if end - start < 2 then return
  if end - start = 2 then
    swap elements of result if out of order
    return

  mid = (start + end)/2

  mergeSort (result, A, start, mid) 
  mergeSort (result, A, mid, end)

  merge left and right halves of A into result 
end

Make full copy of all elements.

Place elements of A[start,end) into result[start,end) in sorted order.

Sort results[start,mid) into A[start,mid).

Merge sorted subarrays in A back into result.

Solution
Merge Sort merges the left- and right-sorted subarrays using two indices i and j to
iterate over the left (and right) elements, always copying the smaller of A[i] and A[j]
into its proper location result[idx]. There are three cases to consider:

• The right side is exhausted (j ≥ end), in which case the remaining elements are
taken from the left side

• The left side is exhausted (i ≥ mid), in which case the remaining elements are
taken from from the right side

• The left and right side have elements; if A[i] < A[j], insert A[i] otherwise insert
A[j]

Once the for loop completes, result has the merged (and sorted) elements from
the original A[start, end). Example 4-10 contains the Python implementation of
Merge Sort.
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Example 4-10. Merge Sort implementation in Python

def sort (A):
  """merge sort A in place."""
  copy = list (A)
  mergesort_array (copy, A, 0, len(A))

def mergesort_array (A, result, start, end):
   """Mergesort array in memory with given range."""
  if end - start < 2:
    return
  if end - start == 2:
    if result[start] > result[start+1]:
      result[start],result[start+1] = result[start+1],result[start]
    return

  mid = (end + start) // 2
  mergesort_array (result, A, start, mid)
  mergesort_array (result, A, mid, end)

  # merge A left- and right- side
  i = start
  j = mid
  idx = start
  while idx < end:
    if j >= end or (i < mid and A[i] < A[j]):
      result[idx] = A[i]
      i += 1
    else:
      result[idx] = A[j]
      j += 1

    idx += 1

Analysis
Merge Sort completes the “merge” phase in O(n) time after recursively sorting the
left- and right-half of the range A[start, end), placing the properly ordered elements
in the array referenced as result.

Because copy is a true copy of the entire array A, the terminating base cases of the
recursion will work because it references the original elements of the array directly at
their respective index locations. This observation is a sophisticated one and is key to
the algorithm. In addition, the final merge step requires only O(n) operations,
which ensures the total performance remains O(n log n). Because copy is the only
extra space used by the algorithm, the total space requirement is O(n).
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Variations
Of all the sorting algorithms, Merge Sort is the easiest one to convert to working
with external data. Example 4-11 contains a full Java implementation using memory
mapping of data to efficiently sort a file containing binary-encoded integers. This
sorting algorithm requires the elements to all have the same size, so it can’t easily be
adapted to sort arbitrary strings or other variable-length elements.

Example 4-11. External Merge Sort implementation in Java

public static void mergesort (File A) throws IOException {
  File copy = File.createTempFile ("Mergesort", ".bin");
  copyFile(A, copy);

  RandomAccessFile src = new RandomAccessFile (A, "rw");
  RandomAccessFile dest = new RandomAccessFile (copy, "rw");
  FileChannel srcC = src.getChannel();
  FileChannel destC = dest.getChannel();
  MappedByteBuffer srcMap = srcC.map (FileChannel.MapMode.READ_WRITE,
                                      0, src.length());
  MappedByteBuffer destMap = destC.map (FileChannel.MapMode.READ_WRITE,
                                      0, dest.length());

  mergesort (destMap, srcMap, 0, (int) A.length());

  // The following two invocations are only needed on Windows platform:
  closeDirectBuffer (srcMap);
  closeDirectBuffer (destMap);
  src.close();
  dest.close();
  copy.deleteOnExit();
}

static void mergesort (MappedByteBuffer A, MappedByteBuffer result,
                       int start, int end) throws IOException {
  if (end - start < 8) {
    return;
  }

  if (end - start == 8) {
    result.position (start);
    int left = result.getInt();
    int right = result.getInt();
    if (left > right) {
      result.position (start);
      result.putInt (right);
      result.putInt (left);
    }
    return;
  }
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  int mid = (end + start)/8*4;
  mergesort (result, A, start, mid);
  mergesort (result, A, mid, end);

  result.position (start);
  for (int i = start, j = mid, idx=start; idx < end; idx += 4) {
    int Ai = A.getInt (i);
    int Aj = 0;
    if (j < end) { Aj = A.getInt (j); }
    if (j >= end || (i < mid && Ai < Aj)) {
      result.putInt (Ai);
      i += 4;
    } else {
      result.putInt (Aj);
      j += 4;
    }
  }
}

The structure is identical to the Merge Sort implementation, but it uses a memory-
mapped structure to efficiently process data stored on the file system. There are
issues on Windows operating systems that fail to properly close the MappedByte
Buffer data. The repository contains a work-around method closeDirect

Buffer(MappedByteBuffer) that will handle this responsibility.

String Benchmark Results
To choose the appropriate algorithm for different data, you need to know some
properties about your input data. We created several benchmark data sets on which
to show how the algorithms presented in this chapter compare with one another.
Note that the actual values of the generated tables are less important because they
reflect the specific hardware on which the benchmarks were run. Instead, you
should pay attention to the relative performance of the algorithms on the corre‐
sponding data sets:

Random strings
Throughout this chapter, we have demonstrated performance of sorting algo‐
rithms when sorting 26-character strings that are permutations of the letters in
the alphabet. Given there are n! such strings, or roughly 4.03*1026 strings, there
are few duplicate strings in our sample data sets. In addition, the cost of com‐
paring elements is not constant, because of the occasional need to compare
multiple characters.

Double-precision floating-point values
Using available pseudorandom generators available on most operating systems,
we generate a set of random numbers from the range [0, 1). There are essen‐
tially no duplicate values in the sample data set and the cost of comparing two
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elements is a fixed constant. The results of these data sets are not included here,
but can be found in the code repository.

The input data provided to the sorting algorithms can be preprocessed to ensure
some of the following properties (not all are compatible):

Sorted
The input elements can be presorted into ascending order (the ultimate goal)
or in descending order.

Killer median-of-three
Musser (1997) discovered an ordering that ensures that Quicksort requires
O(n2) comparisons when using median-of-three to choose a pivot.

Nearly sorted
Given a set of sorted data, we can select k pairs of elements to swap and the
distance d with which to swap (or 0 if any two pairs can be swapped). Using
this capability, you can construct input sets that might more closely match your
input set.

The upcoming tables are ordered left to right, based on how well the algorithms
perform on the final row in the table. To produce the results shown in Tables 4-6
through 4-8, we executed each trial 100 times and discarded the best and worst per‐
formers. The average of the remaining 98 trials is shown in these tables. The col‐
umns labeled “Quicksort BFPRT4 minSize = 4” refer to a Quicksort implementation
that uses BFPRT (with groups of 4) to select the partition value, switching to Inser‐
tion Sort when a subarray to be sorted has four or fewer elements.

Because the performance of Quicksort median-of-three degrades so quickly, only
10 trials were executed in Table 4-8.

Table 4-6. Performance results (in seconds) on random 26-letter permutations
of the alphabet

n Hash Sort 17,576
buckets

Quicksort median-
of-three

Merge Sort Heap Sort Quicksort BFPRT4

minSize = 4

4,096 0.000631 0.000741 0.000824 0.0013 0.0028

8,192 0.0011 0.0016 0.0018 0.0029 0.0062

16,384 0.0020 0.0035 0.0039 0.0064 0.0138

32,768 0.0040 0.0077 0.0084 0.0147 0.0313

65,536 0.0107 0.0168 0.0183 0.0336 0.0703

131,072 0.0359 0.0420 0.0444 0.0893 0.1777
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Table 4-7. Performance (in seconds) on sorted random 26-letter permutations
of the alphabet

n Insertion Sort Merge Sort Quicksort
median-of-
three

Hash Sort
17,576 buckets

Heap Sort Quicksort BFPRT4

minSize = 4

4,096 0.000029 0.000434 0.00039 0.000552 0.0012 0.0016

8,192 0.000058 0.000932 0.000841 0.001 0.0026 0.0035

16,384 0.000116 0.002 0.0018 0.0019 0.0056 0.0077

32,768 0.000237 0.0041 0.0039 0.0038 0.0123 0.0168

65,536 0.000707 0.0086 0.0085 0.0092 0.0269 0.0364

131,072 0.0025 0.0189 0.0198 0.0247 0.0655 0.0834

Table 4-8. Performance (in seconds) on killer median data

n Merge Sort Hash Sort 17,576
buckets

Heap Sort Quicksort BFPRT4

minSize = 4
Quicksort median-
of-three

4,096 0.000505 0.000569 0.0012 0.0023 0.0212

8,192 0.0011 0.0010 0.0026 0.0050 0.0841

16,384 0.0023 0.0019 0.0057 0.0108 0.3344

32,768 0.0047 0.0038 0.0123 0.0233 1.3455

65,536 0.0099 0.0091 0.0269 0.0506 5.4027

131,072 0.0224 0.0283 0.0687 0.1151 38.0950

Analysis Techniques
When analyzing a sorting algorithm, we must explain its best-case, worst-case, and
average-case performance (as discussed in Chapter 2). The average case is typically
hardest to accurately quantify and relies on advanced mathematical techniques and
estimation. It also assumes a reasonable understanding of the likelihood that the
input may be partially sorted. Even when an algorithm has been shown to have a
desirable average-case cost, its implementation may simply be impractical. Each
sorting algorithm in this chapter is analyzed both by its theoretical behavior and by
its actual behavior in practice.

A fundamental result in computer science is that no algorithm that sorts by com‐
paring elements can do better than O(n log n) performance in the average or worst
case. We now sketch a proof. Given n items, there are n! permutations of these ele‐
ments. Every algorithm that sorts by pairwise comparisons corresponds to a binary
decision tree. The leaves of the tree correspond to an underlying permutation, and
every permutation must have at least one leaf in the tree. The nodes on a path from
the root to a leaf correspond to a sequence of comparisons. The height of such a tree
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is the number of comparison nodes in the longest path from the root to a leaf node;
for example, the height of the tree in Figure 4-10 is 5 because only five comparisons
are needed in all cases (although in four cases only four comparisons are needed).

Construct a binary decision tree where each internal node of the tree represents a
comparison ai ≤ aj and the leaves of the tree represent one of the n! permutations.
To sort a set of n elements, start at the root and evaluate the statements shown in
each node. Traverse to the left child when the statement is true; otherwise, traverse
to the right child. Figure 4-10 shows a sample decision tree for four elements.

Figure 4-10. Binary decision tree for ordering four elements

We could construct many different binary decision trees. Nonetheless, we assert that
given any such binary decision tree for comparing n elements, we can compute its
minimum height h—that is, there must be some leaf node that requires h compari‐
son nodes in the tree from the root to that leaf. Consider a complete binary tree of
height h in which all nonleaf nodes have both a left and right child. This tree con‐
tains a total of n = 2h − 1 nodes and height h = log (n + 1); if the tree is not complete,
it could be unbalanced in strange ways, but we know that h ≥ ⌈log (n + 1)⌉. Any
binary decision tree with n! leaf nodes already demonstrates that it has at least n!
nodes in total. We need only compute h = ⌈log (n!)⌉ to determine the height of any
such binary decision tree. We take advantage of the following properties of loga‐
rithms: log (a*b) = log (a) + log (b) and log (x y) = y*log (x).

h = log (n!) = log (n * (n − 1) * (n − 2) * ... * 2 * 1)

h > log (n * (n − 1) * (n − 2) * ... * n/2)

h > log ((n/2)n/2)
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h > (n/2) * log (n/2)

h > (n/2) * (log (n) − 1)

Thus, h > (n/2)*(log (n) – 1). What does this mean? Well, given n elements to be
sorted, there will be at least one path from the root to a leaf of size h, which means
an algorithm that sorts by comparison requires at least this many comparisons to
sort the n elements. Note that h is computed by a function f(n); here in particular,
f(n) = (1/2)*n*log (n) – n/2, which means any sorting algorithm using comparisons
will require O(n log n) comparisons to sort.
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5
Searching

Given a collection C of elements, there are two fundamental queries:

Existence
Does C contain a target element? Given a collection C, we often simply want to
know whether the collection already contains a given element t. The response
to such a query is true if an element exists in the collection that matches the
desired target t, or false if this is not the case.

Associative lookup
Return information associated in collection C with a target key value k. A key is
usually associated with a complex structure called a value. The lookup retrieves
or replaces this value.

The algorithms in this chapter describe specific ways to structure data to more effi‐
ciently process search queries. For example, you might order the collection C using
the sorting algorithms previously covered in Chapter 4. As we will see, sorting
improves the performance of queries, but there are other costs involved in main‐
taining a sorted collection, especially when elements are frequently inserted
or deleted.

Ultimately the performance is based on how many elements an algorithm inspects
as it processes a query. Use the following guide to select the best algorithm for you:

Small collections
Sequential Search offers the simplest implementation and is implemented as a
basic construct in many programming languages. Use this algorithm when the
collection is available only sequentially, as with an iterator.
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Restricted memory
When the collection is an array that doesn’t change and you want to conserve
memory, use Binary Search.

Dynamic membership
If the elements in the collection change frequently, consider Hash-Based
Search and Binary Search Tree for their ability to spread out the costs associ‐
ated with maintaining their data structures.

Sorted access
Use Binary Search Tree when you need dynamic membership and the ability to
process elements in the collection in sorted order.

Don’t forget to account for any upfront preprocessing required by the algorithm to
structure data in advance of handling search queries. Choose an appropriate struc‐
ture that not only speeds up the performance of individual queries, but also minimi‐
zes the overall cost of maintaining the collection structure in the face of both
dynamic access and multiple queries.

We assume the existence of a set U (the universe) of possible values. The collection
C contains elements drawn from U, and the target element being sought, t, is a
member of U. If t is instead a key value, we consider U to be the set of potential key
values, k ∈ U, and the collection C may contain more complex elements. Note that
duplicate values may exist within C, so it cannot be treated as a set (which only sup‐
ports unique membership).

When the collection C allows the indexing of arbitrary elements, we refer to the col‐
lection as an array A with the notation A[i] representing the ith element of A. By
convention, we use the value null to represent an element not in U; such a value
is useful when a search is asked to return a specific element in a collection but that
element is not present. In general, we assume it is impossible to search for null in
a collection.

Sequential Search
Sequential Search, also called linear search, is the simplest of all searching algo‐
rithms. It is a brute-force approach to locate a single target value, t, in a collection,
C. It finds t by starting at the first element of the collection and examining each sub‐
sequent element until it runs out of elements or it finds a matching element.

There must be some way to obtain each element from the collection being searched;
the order is not important. Often the elements of a collection C can be accessed only
with a read-only iterator that retrieves each element from C, as, for example, a data‐
base cursor in response to an SQL query. Both modes of access are shown here.

Input/Output
The input consists of a nonempty collection, C, of n > 0 elements and a target value,
t, that is sought. The search will return true if C contains t and false otherwise.
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Sequential Search Summary
Best: O(1)    Average, Worst: O(n)

search (A,t)

  for i=0 to n-1 do 
    if A[i] = t then
      return true
  return false
end

search (C,t)
  iter = C.begin()

  while iter ≠ C.end() do 

    e = iter.next() 
    if e = t then
      return true
  return false
end

Access each element in order, from position 0 to n – 1.

Iterator continues until it is exhausted of elements.

Each element is retrieved one by one from an iterator.

Context
You frequently need to locate an element in a collection that may or may not be
ordered. With no further knowledge about the information that might be in the col‐
lection, Sequential Search gets the job done in a brute-force manner. It is the only
search algorithm you can use if the collection is accessible only through an iterator.

If the collection is unordered and stored as a linked list, inserting an element is a
constant time operation (simply append it to the end of the list). Frequent insertions
into an array-based collection require dynamic array management, which is either
provided by the underlying programming language or requires specific attention by
the programmer. In both cases, the expected time to find an element is O(n); thus,
removing an element takes at least O(n).

Sequential Search places the fewest restrictions on the type of elements you can
search. The only requirement is the presence of a match function to determine
whether the target element being searched for matches an element in the collection;
often this functionality is delegated to the elements themselves.

Solution
Often the implementation of Sequential Search is trivial. The Python code in
Example 5-1 searches sequentially through a collection.
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Example 5-1. Sequential Search in Python

def sequentialSearch (collection, t):
  for e in collection:
    if e == t:
      return True
  return False

The code is disarmingly simple. The function receives a collection and the target
item t being sought. The collection can be a list or any other iterable Python object.
Elements involved in the search must support the == operator. This same example
written in Java is shown in Example 5-2. The SequentialSearch generic class has a
type parameter, T, which specifies the elements in the collection; T must provide a
valid equals (Object o) method for this code to work properly.

Example 5-2. Sequential Search in Java

public class SequentialSearch<T> {

  /** Apply brute-force Sequential Search to search indexed
   *  collection (of type T) for the given target item. */
  public boolean search (T[] collection, T t) {
    for (T item : collection) {
      if (item.equals (t)) {
        return true;
      }
    }
    return false;
  }

  /** Apply brute-force Sequential Search to search iterable
   * collection (of type T) for the given target item. */
  public boolean search (Iterable<T> collection, T t) {
    Iterator<T> iter = collection.iterator();
    while (iter.hasNext()) {
      if (iter.next().equals (t)) {
        return true;
      }
    }
    return false;
  }
}

Analysis
If the item being sought belongs to the collection and is equally likely to be found at
any of its indexed locations (alternatively, if it is equally likely to be emitted by an
iterator at any position), on average Sequential Search probes n/2 + 1/2 elements
(as presented in Chapter 2). That is, you will inspect about half the elements in the
collection for each item you find, resulting in O(n) performance. The best case is
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when the item being sought is the first element in the collection, resulting in O(1)
performance. This algorithm exhibits linear growth in the average and worst cases.
If you double the size of the collection, this should approximately double the
amount of time spent searching.

To show Sequential Search in action, we construct an ordered collection of the n
integers in the range [1, n]. Although the collection is ordered, this information is
not used by the searching code. We ran a suite of 100 trials; in each trial we execute
1,000 queries for a random target t that would be present in the collection with
probability p. Thus, of these 1,000 queries, p*1,000 are guaranteed to find t in the
collection (for p = 0.0, the target t is a negative number). We aggregated the time to
execute these queries and discarded the best- and worst-performing trials. Table 5-1
shows the average of the remaining 98 trials at four specific p values. Note how the
execution time approximately doubles as the size of the collection doubles. You
should also observe that for each collection size n, the worst performance occurs in
the final column where the target t does not exist in the collection.

Table 5-1. Sequential Search performance (in seconds)

n p = 1.0 p = 0.5 p = 0.25 p = 0.0

4,096 0.0057 0.0087 0.0101 0.0116

8,192 0.0114 0.0173 0.0202 0.0232

16,384 0.0229 0.0347 0.0405 0.0464

32,768 0.0462 0.0697 0.0812 0.0926

65,536 0.0927 0.1391 0.1620 0.1853

131,072 0.1860 0.2786 0.3245 0.3705

Binary Search
Binary Search delivers better performance than Sequential Search because it starts
with a collection whose elements are already sorted. Binary Search divides the sor‐
ted collection in half until the sought-for item is found, or until it is determined that
the item does not exist in the collection.

Input/Output
The input to Binary Search is an indexed collection A whose elements are totally
ordered, which means that given two index positions, i and j, A[i] < A[j] if and only
if i < j. We construct a data structure that holds the elements (or pointers to the ele‐
ments) and preserves the ordering of the keys. The output to Binary Search is
either true or false.
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Context
When searching through the ordered collection, a logarithmic number of probes is
necessary in the worst case.

Different types of data structures support binary searching. If the collection never
changes, the elements should be placed into an array. This makes it easy to navigate
through the collection. However, if you need to add or remove elements from the
collection, this approach becomes unwieldy. There are several structures we can use;
one of the best known is the binary search tree, discussed later in this chapter.

Binary Search Summary
Best: O(1)    Average, Worst: O(log n)

search (A,t)
  low = 0
  high = n-1

  while low ≤ high do 

    mid = (low + high)/2 
    if t < A[mid] then
      high = mid - 1
    else if t > A[mid] then
      low = mid + 1
    else
      return true

  return false 
end

Repeat while there is a range to be searched.

Midpoint computed using integer arithmetic.

“Variations” on page 99 discusses how to support a “search-or-insert” opera‐
tion based on final value of mid at this point.

Solution
Given an ordered collection of elements as an array, the Java code in Example 5-3
shows a parameterized implementation of Binary Search for any base type T. Java
provides the java.util.Comparable<T> interface that contains the compareTo
method. Any class that correctly implements this interface guarantees a total order‐
ing of its instances.

Example 5-3. Binary Search implementation in Java

/**
 * Binary Search given a presorted array of the parameterized type.
 *
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 * @param T  elements of the collection being searched are of this type.
 *           The parameter T must implement Comparable.
 */
public class BinarySearch<T extends Comparable<T>> {

  /** Search collection for non-null target; return true on success. */
  public boolean search(T[] collection, T target) {
    if (target == null) { return false; }

    int low = 0, high = collection.length - 1;
    while (low <= high) {
      int mid = (low + high)/2;
      int rc = target.compareTo (collection[mid]);
      if (rc < 0) {         // target is less than collection[i]
        high = mid - 1;
      } else if (rc > 0) {  // target is greater than collection[i]
        low = mid + 1;
      } else {              // item has been found
        return true;
      }
    }

    return false;
  }
}

Three variables are used in the implementation: low, high, and mid. low is the low‐
est index of the current subarray being searched, high is its upper index, and mid is
its midpoint. The performance of this code depends on the number of times the
while loop executes.

Binary Search adds a small amount of complexity for large performance gains. The
complexity can increase when the collection is not stored in a simple in-memory
data structure, such as an array. A large collection might need to be kept in secon‐
dary storage, such as a file on a disk. In such a case, the ith element is accessed by its
offset location within the file. Using secondary storage, the time required to search
for an element is dominated by the costs to access the storage; other solutions
related to Binary Search may be appropriate.

Analysis
Binary Search divides the problem size approximately in half every time it executes
the loop. The maximum number of times the collection of size n is cut in half is
1 + ⌊log (n)⌋. If we use a single operation to determine whether two items are equal,
lesser than, or greater than (as is made possible by the Comparable interface), only 1
+ ⌊log (n)⌋ comparisons are needed, resulting in a classification of O(log n).

We ran 100 trials of 524,288 searches for an item stored in a collection in memory
of size n (ranging in size from 4,096 to 524,288) with probability p (sampled at 1.0,
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0.5, and 0.0) of finding each item. After removing the best and worst performers for
each trial, Table 5-2 shows the average performance for the remaining 98 trials.

Table 5-2. In-memory execution of 524,288 searches using Binary Search
compared to Sequential Search (in seconds)

n Sequential Search time Binary Search time

p = 1.0 p = 0.5 p = 0.0 p = 1.0 p = 0.5 p = 0.0

4,096 3.0237 4.5324 6.0414 0.0379 0.0294 0.0208

8,192 6.0405 9.0587 12.0762 0.0410 0.0318 0.0225

16,384 12.0742 18.1086 24.1426 0.0441 0.0342 0.0243

32,768 24.1466 36.2124 48.2805 0.0473 0.0366 0.0261

65,536 48.2762 72.4129 96.5523 0.0508 0.0395 0.0282

131,072 * * * 0.0553 0.0427 0.0300

262,144 * * * 0.0617 0.0473 0.0328

524,288 * * * 0.0679 0.0516 0.0355

These trials were designed to ensure that when p = 1.0, there is an equal probability
of searching for any element in the collection; if this were not the case, the results
could be skewed. For both Sequential Search and Binary Search, the input is an
array of sorted integers in the range [0, n). To produce 524,288 search items known
to be in the collection (p = 1.0), we cycle through the n numbers 524,288/n times.

Table 5-3 shows the times for performing 524,288 searches on a collection stored on
a local disk. Either the searched-for item always exists in the collection (i.e., p = 1.0),
or it never does—that is, we search for –1 in the collection [0, n). The data is simply
a file of ascending integers, where each integer is packed into four bytes. The domi‐
nance of disk access is clear because the results in Table 5-3 are nearly 400 times
slower than those in Table 5-2. Note how the performance of the search increases by
a fixed amount as n doubles in size, a clear indication that the performance of
Binary Search is O(log n).

Table 5-3. Secondary-storage Binary Search performance for 524,288 searches
(in seconds)

n p = 1.0 p = 0.0

4,096 1.2286 1.2954

8,192 1.3287 1.4015

16,384 1.4417 1.5080

32,768 6.7070 1.6170

65,536 13.2027 12.0399
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n p = 1.0 p = 0.0

131,072 19.2609 17.2848

262,144 24.9942 22.7568

524,288 30.3821 28.0204

Variations
To support a “search-or-insert” operation, observe that all valid array indices are
non-negative. The Python variation in Example 5-4 shows a bs_contains method
that returns a negative number p if searching for a target element not contained in
the ordered array. The value –(p + 1) is the index position where target should be
inserted, as shown in bs_insert. Naturally this will bump up all the higher indexed
values to make room for the new element.

Example 5-4. Python search-or-insert variation

def bs_contains (ordered, target):
  """Return index of target in ordered or -(p+1) where to insert it."""
  low = 0
  high = len(ordered)-1
  while low <= high:
    mid = (low + high) // 2
    if target < ordered[mid]:
      high = mid-1
    elif target > ordered[mid]:
      low = mid+1
    else:
      return mid

  return -(low + 1)

def bs_insert (ordered, target):
  """Inserts target into proper location if not present."""
  idx = bs_contains (ordered, target)
  if idx < 0:
    ordered.insert (-(idx + 1), target)

Inserting into or deleting from an ordered array becomes inefficient as the size of
the array grows, because every array entry must contain a valid element. Therefore,
inserting involves extending the array (physically or logically) and pushing, on aver‐
age, half of the elements ahead one index position. Deletion requires shrinking the
array and moving half of the elements one index position lower.

Hash-Based Search
The previous sections on searching are appropriate when there are a small number
of elements (Sequential Search) or the collection is already ordered (Binary
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Search). We need more powerful techniques for searching larger collections that are
not necessarily ordered. One of the most common approaches is to use a hash func‐
tion to transform one or more characteristics of the searched-for item into an index
into a hash table. Hash-Based Search has better average-case performance than the
other search algorithms described in this chapter. Many books on algorithms dis‐
cuss Hash-Based Search under the topic of hash tables (Cormen et al., 2009); you
may also find this topic in books on data structures that describe hash tables.

In Hash-Based Search the n elements of a collection C are first loaded into a hash
table H with b bins structured as an array. This preprocessing step has O(n) perfor‐
mance, but improves the performance of future searches. The concept of a hash
function makes this possible.

A hash function is a deterministic function that maps each element Ci to an integer
value hi. For a moment, let’s assume that 0 ≤ hi < b. When loading the elements into
a hash table, element Ci is inserted into the bin H[hi]. Once all elements have been
inserted, searching for an item t becomes a search for t within H[hash(t)].

The hash function guarantees only that if two elements Ci and Cj are equal, hash(Ci)
= hash(Cj). It can happen that multiple elements in C have the same hash value; this
is known as a collision and the hash table needs a strategy to deal with these situa‐
tions. The most common solution is to store a linked list at each hash index (even
though many of these linked lists may contain only one element), so all colliding
values can be stored in the hash table. The linked lists have to be searched linearly,
but this will be quick because each is likely to store at most a few elements. The fol‐
lowing pseudocode describes a linked list solution to collisions.

The general pattern for Hash-Based Search is shown in Figure 5-1 with a small
example. The components are:

• A set U that defines the set of possible hash values. Each element e ∈ C maps to
a hash value h ∈ U

• A hash table, H, containing b bins that store the n elements from the original
collection C

• The hash function, hash, which computes an integer value h for every element
e, where 0 ≤ h < b

This information is stored in memory using arrays and linked lists.

Hash-Based Search raises two main concerns: the design of the hash function and
how to handle collisions. A poorly chosen hash function can leave keys poorly dis‐
tributed in the primary storage, with two consequences: (a) many bins in the hash
table may be unused, wasting space, and (b) there will be collisions that force many
keys into the same bin, which worsens search performance.
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Figure 5-1. General approach to hashing

Input/Output
Unlike Binary Search, the original collection C does not need to be ordered for
Hash-Based Search. Indeed, even if the elements in C were ordered in some way,
the hashing method that inserts elements into the hash table H does not attempt to
replicate this ordering within H.

The input to Hash-Based Search is the computed hash table, H, and the target ele‐
ment t being sought. The algorithm returns true if t exists in the linked list stored
by H[h] where h = hash(t). If t does not exist within the linked list stored by H[h],
false is returned to indicate t is not present in H (and thus, does not exist in C).

Context
Assume you had an array of 213,557 sorted English words (such as found in
the code repository for this book). We know from our discussion on Binary Search
that we can expect about 18 string comparisons on average to locate a word in this
array (since log (213557) = 17.70). With Hash-Based Search the number of string
comparisons is based on the length of the linked lists rather than the size of the col‐
lection.

We first need to define the hash function. One goal is to produce as many different
values as possible, but not all values need to be unique. Hashing has been studied
for decades, and numerous papers describe effective hash functions, but they can be
used for much more than searching. For example, special hash functions are essen‐
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tial for cryptography. For searching, a hash function should have good distribution
and should be quick to compute with respect to machine cycles.

Hash-Based Search Summary
Best, Average: O(1)    Worst: O(n)

loadTable (size, C)
  H = new array of given size
  foreach e in C do
    h = hash(e)

    if H[h] is empty then 
      H[h] = new Linked List
    add e to H[h]
  return A
end

search (H, t)
  h = hash(t)
  list = H[h]
  if list is empty then
    return false

  if list contains t then 
    return true
  return false
end

Create linked lists when e is inserted into empty bin.

Use Sequential Search on small lists.

A popular technique is to produce a value based on each character from the original
string:

hashCode(s) = s[0]*31(len–1) + s[1]*31(len–2) + ... + s[len – 1]

where s[i] is the ith character (as an ASCII value between 0 and 255) and len is the
length of the string s. Computing this function is simple, as shown in the Java code
in Example 5-5 (adapted from the Open JDK source code), where chars is the array
of characters that defines a string. By our definition, the hashCode() method for the
java.lang.String class is not yet a hash function because its computed value is not
guaranteed to be in the range [0, b).

Example 5-5. Sample Java hashCode

  public int hashCode() {
    int h = hash;
    if (h == 0) {
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      for (int i = 0; i < chars.length; i++) {
         h = 31*h + chars[i];
      }
      hash = h;
    }
    return h;
  }

For efficiency, this hashCode method caches the value of the computed hash to
avoid recomputation (i.e., it computes the value only if hash is 0). Observe that this
function returns very large integers and sometimes negative values because the int
type in Java can store only 32 bits of information. To compute the integer bin for a
given element, define hash(s) as:

hash(s) = abs(hashCode(s)) % b

where abs is the absolute value function and % is the modulo operator that returns
the remainder when dividing by b. Doing so ensures the computed integer is in the
range [0, b).

Choosing the hashing function is just the first decision to make when implementing
Hash-Based Search. Storage space poses another design issue. The primary storage,
H, must be large enough to reduce the size of the linked lists storing the elements in
each bin. You might think that H could contain b = n bins, where the hash function
is a one-to-one mapping from the set of strings in the collection onto the integers
[0, n), but this is not easy to accomplish! Instead, we try to define a hash table that
will contain as few empty bins as possible. If our hash function distributes the keys
evenly, we can achieve reasonable success by selecting an array size approximately
as large as the collection.

The size of H is typically chosen to be a prime number to ensure that using the %
modulo operator efficiently distributes the computed bin numbers. A good choice
in practice is 2k − 1, even though this value isn’t always prime.

The elements stored in the hash table have a direct effect on memory. Since each bin
stores elements in a linked list, the elements of the list are pointers to objects on the
heap. Each list has overhead storage that contains pointers to the first and last ele‐
ments of the list and, if you use the LinkedList class from the Java JDK, a signifi‐
cant amount of additional fields. We could write a much simpler linked list class
that provides only the necessary capabilities, but this certainly adds additional cost
to the implementation of Hash-Based Search.

The advanced reader should, at this point, question the use of a basic hash function
and hash table for this problem. When the word list is fixed and not likely to
change, we can do better by creating a perfect hash function. A perfect hash function
is one that guarantees no collisions for a specific set of keys; this option is discussed
in “Variations” on page 109. Let’s first try to solve the problem without one.
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For our first try at this problem, we choose a primary hash table H that will hold b =
218 − 1 = 262,143 elements. Our word list contains 213,557 words. If our hash func‐
tion perfectly distributes the strings, there will be no collisions and only about
40,000 open bins. This, however, is not the case. Table 5-4 shows the distribution of
the hash values for the Java String class on our word list with a table of 262,143
bins. Recall that hash(s) = abs(hashCode(s))%b. As you can see, no bin contains
more than seven strings; for nonempty bins, the average number of strings per bin
is approximately 1.46. Each row shows the number of bins used and how many
words hash to those bins. Almost half of the table bins (116,186) have no strings
that hash to them. So this hashing function wastes about 500KB of memory (assum‐
ing the size of a pointer is four bytes). You may be surprised that this is really a good
hashing function and that finding one with better distribution will require a more
complex scheme.

For the record, there were only five pairs of strings with identical hashCode values
(e.g., both “hypoplankton” and “unheavenly” have a computed hashCode value of
427,589,249)!

Table 5-4. Hash distribution using Java String.hashCode() method as key with
b = 262,143 bins

Number of items
in bin

Number of bins

0 116,186

1 94,319

2 38,637

3 10,517

4 2,066

5 362

6 53

7 3

If you use the LinkedList class, each nonempty element of H will require 12 bytes
of memory, assuming the size of a pointer is four bytes. Each string element is
incorporated into a ListElement that requires an additional 12 bytes. For the previ‐
ous example of 213,557 words, we require 5,005,488 bytes of memory beyond the
actual string storage. The breakdown of this memory usage is:

• Size of the primary table: 1,048,572 bytes
• Size of 116,186 linked lists: 1,394,232 bytes
• Size of 213,557 list elements: 2,562,684 bytes
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Storing the strings also has an overhead when using the JDK String class. Each
string has 12 bytes of overhead. We can therefore add 213,557*12 = 2,562,684 addi‐
tional bytes to our overhead. So the algorithm chosen in the example requires
7,568,172 bytes of memory. The actual number of characters in the strings in the
word list we used in the example is only 2,099,075, so it requires approximately 3.6
times the space required for the characters in the strings.

Most of this overhead is the price of using the classes in the JDK. The engineering
trade-off must weigh the simplicity and reuse of the classes compared to a more
complex implementation that reduces the memory usage. When memory is at a
premium, you can use one of several variations discussed later to optimize memory
usage. If, however, you have available memory, a reasonable hash function that does
not produce too many collisions, and a ready-to-use linked list implementation, the
JDK solution is usually acceptable.

The major force affecting the implementation is whether the collection is static or
dynamic. In our example, the word list is fixed and known in advance. If, however,
we have a dynamic collection that requires many additions and deletions of ele‐
ments, we must choose a data structure for the hash table that optimizes these oper‐
ations. Our collision handling in the example works quite well because inserting an
item into a linked list can be done in constant time, and deleting an item is propor‐
tional to the length of the list. If the hash function distributes the elements evenly,
the individual lists are relatively short.

Solution
In addition to the hash function, the solution for Hash-Based Search contains two
parts. The first is to create the hash table. The code in Example 5-6 shows how to
use linked lists to hold the elements that hash into a specific table element. The
input elements from collection C are retrieved using an Iterator.

Example 5-6. Loading the hash table

public void load (Iterator<V> it) {
  table = (LinkedList<V>[]) new LinkedList[tableSize];

  // Pull each value from the iterator and find desired bin h.
  // Add to existing list or create new one into which value is added.
  while (it.hasNext()) {
    V v = it.next();

    int h = hashMethod.hash (v);
    if (table[h] == null) {
      table[h] = new LinkedList<V>();
    }
    table[h].add(v);
    count++;
  }
}
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Note that listTable is composed of tableSize bins, each of which is of type
LinkedList<V> to store the elements.

Searching the table for elements now becomes trivial. The code in Example 5-7 does
the job. Once the hash function returns an index into the hash table, we look to see
whether the table bin is empty. If it’s empty, we return false, indicating the
searched-for string is not in the collection. Otherwise, we search the linked list for
that bin to determine the presence or absence of the searched-for string.

Example 5-7. Searching for an element

  public boolean search (V v) {
     int h = hashMethod.hash (v);
     LinkedList<V> list = (LinkedList<V>) listTable[h];
     if (list == null) { return false; }
     return list.contains (v);
  }

  int hash(V v) {
    int h = v.hashCode();
    if (h < 0) { h = 0 - h; }
    return h % tableSize;
  }

Note that the hash function ensures the hash index is in the range [0, tableSize).
With the hashCode function for the String class, the hash function must account
for the possibility that the integer arithmetic in hashCode has overflowed and
returned a negative number. This is necessary because the modulo operator (%)
returns a negative number if given a negative value (i.e., the Java expression −5%3 is
equal to the value −2). For example, using the JDK hashCode method for String
objects, the string “aaaaaa” returns the value −1,425,372,064.

Analysis
As long as the hash function distributes the elements in the collection fairly evenly,
Hash-Based Search has excellent performance. The average time required to search
for an element is constant, or O(1). The search consists of a single look-up in H
followed by a linear search through a short list of collisions. The components to
searching for an element in a hash table are:

• Computing the hash value
• Accessing the item in the table indexed by the hash value
• Finding the specified item in the presence of collisions

All Hash-Based Search algorithms share the first two components; different behav‐
iors stem from variations in collision handling.
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The cost of computing the hash value must be bounded by a fixed, constant upper
bound. In our word list example, computing the hash value was proportional to the
length of the string. If Tk is the time it takes to compute the hash value for the
longest string, it will require ≤ Tk to compute any hash value. Computing the hash
value is therefore considered a constant time operation.

The second part of the algorithm also performs in constant time. If the table is
stored on secondary storage, there may be a variation that depends on the position
of the element and the time required to position the device, but this has a constant
upper bound.

If we can show that the third part of the computation also has a constant upper
bound, it will prove the overall time performance of Hash-Based Search is con‐
stant. For a hash table, define the load factor α to be the average number of elements
in a linked list for some bin H[h]. More precisely, α = n/b, where b is the number of
bins in the hash table and n is the number of elements stored in the hash table.
Table 5-5 shows the actual load factor in the hash tables we create as b increases.
Note how the maximum length of the element linked lists drops while the number
of bins containing a unique element rapidly increases once b is sufficiently large. In
the final row, 81% of the elements are hashed to a unique bin and the average num‐
ber of elements in a bin becomes just a single digit. Regardless of the initial number
of elements, you can choose a sufficiently large b value to ensure there will be a
small, fixed number of elements (on average) in every bin. This means that search‐
ing for an element in a hash table is no longer dependent on the number of elements
in the hash table, but rather is a fixed cost, producing amortized O(1) performance.

Table 5-5. Statistics of hash tables created by example code

b Load factor α Min length of
linked list

Max length of
linked list

Number of
unique bins

4,095 52.15 27 82 0

8,191 26.07 9 46 0

16,383 13.04 2 28 0

32,767 6.52 0 19 349

65,535 3.26 0 13 8,190

131,071 1.63 0 10 41,858

262,143 0.815 0 7 94,319

524,287 0.41 0 7 142,530

1,048,575 0.20 0 5 173,912

Table 5-6 compares the performance of the code from Example 5-7 with the JDK
class java.util.Hashtable on hash tables of different sizes. For the tests labeled
p = 1.0, each of the 213,557 words is used as the target item to ensure the word
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exists in the hash table. For the tests labeled p = 0.0, each of these words has its last
character replaced with a “*” to ensure the word does not exist in the hash table.
Also note that we keep the size of the search words for these two cases the same to
ensure the cost for computing the hash is identical.

We ran each test 100 times and discarded the best- and worst-performing trials. The
average of the remaining 98 trials is shown in Table 5-6. To help understand these
results, the statistics on the hash tables we created are shown in Table 5-5.

Table 5-6. Search time (in milliseconds) for various hash table sizes

b Our hash table shown in Example 5-7 java.util.Hashtable with default capacity

p = 1.0 p = 0.0 p = 1.0 p = 0.0

4,095 200.53 373.24 82.11 38.37

8,191 140.47 234.68 71.45 28.44

16,383 109.61 160.48 70.64 28.66

32,767 91.56 112.89 71.15 28.33

65,535 80.96 84.38 70.36 28.33

131,071 75.47 60.17 71.24 28.28

262,143 74.09 43.18 70.06 28.43

524,287 75.00 33.05 69.33 28.26

1,048,575 76.68 29.02 72.24 27.37

As the load factor goes down, the average length of each element-linked list also
goes down, leading to improved performance. Indeed, by the time b = 1,045,875 no
linked list contains more than five elements. Because a hash table can typically grow
large enough to ensure all linked lists of elements are small, its search performance
is considered to be O(1). However, this is contingent (as always) on having sufficient
memory and a suitable hash function to disperse the elements throughout the bins
of the hash table.

The performance of the existing java.util.Hashtable class outperforms our
example code, but the savings are reduced as the size of the hash table grows. The
reason is that java.util.Hashtable contains optimized list classes that efficiently
manage the element chains. In addition, java.util.Hashtable automatically
“rehashes” the entire hash table when the load factor is too high; the rehash strategy
is discussed in “Variations” on page 109. The implementation increases the cost of
building the hash table, but improves search performance. If we prevent the
“rehash” capability, search performance in java.util.Hashtable is nearly the same
as our implementation.

Table 5-7 shows the number of times rehash is invoked when building the
java.util.Hashtable hash table and the total time (in milliseconds) required to
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build the hash table. We constructed the hash tables from the word list described
earlier; after running 100 trials, the best- and worst-performing timings were dis‐
carded and the table contains the average of the remaining 98 trials. The
java.util.Hashtable class performs extra computation while the hash table is
being constructed to improve the performance of searches (a common trade-off).
Columns 3 and 5 of Table 5-7 show a noticeable cost penalty when a rehash occurs.
Also note that in the last two rows, the hash tables do not rehash themselves, so the
results in columns 3, 5, and 7 are nearly identical. Rehashing while building the
hash table improves the overall performance by reducing the average length of the
element chains.

Table 5-7. Comparable times (in milliseconds) to build hash tables

b Our hash
table

JDK hash table (α = .75) JDK hash table (α = 4.0) JDK hash table (α
= n/b) no rehash

Build Time Build Time #Rehash Build Time #Rehash Build Time

4,095 403.61 42.44 7 35.30 4 104.41

8,191 222.39 41.96 6 35.49 3 70.74

16,383 135.26 41.99 5 34.90 2 50.90

32,767 92.80 41.28 4 33.62 1 36.34

65,535 66.74 41.34 3 29.16 0 28.82

131,071 47.53 39.61 2 23.60 0 22.91

262,143 36.27 36.06 1 21.14 0 21.06

524,287 31.60 21.37 0 22.51 0 22.37

1,048,575 31.67 25.46 0 26.91 0 27.12

Variations
One popular variation of Hash-Based Search modifies the handling of collisions by
restricting each bin to contain a single element. Instead of creating a linked list to
hold all elements that hash to some bin in the hash table, it uses the open addressing
technique to store colliding items in some other empty bin in the hash table H. This
approach is shown in Figure 5-2. With open addressing, the hash table reduces stor‐
age overhead by eliminating all linked lists.

Figure 5-2. Open addressing
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To insert an element using open addressing, compute the desired bin hk = hash(e)
that should contain e. If H[hk] is empty, assign H[hk] = e just as in the standard algo‐
rithm. Otherwise probe through H using a probing strategy and place e in the first
discovered empty bin:

Linear probing
Repeatedly search other bins hk = (hk + c*i) % b where c is an integer offset and
i is the number of successive probes into H; often, c = 1. Clusters of elements
may appear in H using this strategy.

Quadratic probing
Repeatedly search other bins hk = (hk + c1*i + c2*i2) % b where c1 and c2 are con‐
stants. This approach tends to break up clusters of elements. Useful values in
practice are c1 = c2 = 1/2.

Double hashing
Like linear probing except that c is not a constant but is determined by a sec‐
ond hash function; this extra computation is intended to reduce the likelihood
of clustering.

In all cases, if no empty bin is found after b probe attempts, the insert request must
fail.

Figure 5-2 shows a sample hash table with b = 11 bins using linear probing with
c = 3. The load factor for the hash table is α = 0.45 because it contains five elements.
This figure shows the behavior when attempting to add element e, which hashes to
hk = 1. The bin H[1] is already occupied (by the value 3) so it proceeds to probe
other potential bins. After i = 3 iterations it finds an empty bin and inserts e into
H[10].

Assuming we only search through b potential bins, the worst-case performance of
insert is O(b) but with a low-enough load factor and no clustering, it should require
only a fixed number of probes. Figure 5-3 shows the expected number of probes for
a search; see (Knuth, 1997) for details.

Figure 5-3. The expected number of probes for a search
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It is a problem to remove elements from a hash table that uses open addressing. Let’s
assume in Figure 5-2 that the values 3, 1, and 5 all hash to hk = 1 and that they were
inserted into the hash table in this order. Searching for the value 5 will succeed
because you will make three probes of the hash table and ultimately locate it in posi‐
tion H[7]. If you deleted value 1 from the hash table and cleared bin H[4] you
would no longer be able to locate value 5 because the search probes stop at the first
empty bin located. To support deletions with open addressing you would need to
mark a bin as deleted and adjust the search function accordingly.

The code for open addressing is shown in Example 5-8. The class assumes the user
will provide a hash function that produces a valid index in the range [0, b) and a
probe function for open addressing; plausible alternatives are provided by default
using Python’s built-in hash method. This implementation allows elements to be
deleted and it stores a deleted list to ensure the open addressing chains do not
break. The following implementation follows set semantics for a collection, and only
allows for unique membership in the hash table.

Example 5-8. Python implementation of open addressing hash table

class Hashtable:
  def __init__(self, b=1009, hashFunction=None, probeFunction=None):
    """Initialize a hash table with b bins, given hash function, and
 probe function."""
    self.b = b
    self.bins = [None] * b
    self.deleted = [False] * b

    if hashFunction:
      self.hashFunction = hashFunction
    else:
      self.hashFunction = lambda value, size: hash(value) % size

    if probeFunction:
      self.probeFunction = probeFunction
    else:
      self.probeFunction = lambda hk, size, i : (hk + 37) % size

  def add (self, value):
    """
    Add element into hashtable returning -self.b on failure after
    self.b tries. Returns number of probes on success.

    Add into bins that have been marked for deletion and properly
    deal with formerly deleted entries.
    """
    hk = self.hashFunction (value, self.b)

    ctr = 1
    while ctr <= self.b:
      if self.bins[hk] is None or self.deleted[hk]:
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        self.bins[hk] = value
        self.deleted[hk] = False
        return ctr

      # already present? Leave now
      if self.bins[hk] == value and not self.deleted[hk]:
        return ctr

      hk = self.probeFunction (hk, self.b, ctr)
      ctr += 1

    return -self.b

The code in Example 5-8 shows how open addressing adds elements into empty
bins or bins marked as deleted. It maintains a counter that ensures the worst-case
performance is O(b). The caller can determine that add was successful if the func‐
tion returns a positive number; if probeFunction is unable to locate an empty bin in
b tries, then a negative number is returned. The delete code in Example 5-9 is
nearly identical to the code to check whether the hash table contains a value; specifi‐
cally, the contains method (not reproduced here) omits the code that marks
self.deleted[hk] = True. Observe how this code uses the probeFunction to
identify the next bin to investigate.

Example 5-9. Open addressing delete method

def delete (self, value):
  """Delete value from hash table without breaking existing chains."""
  hk = self.hashFunction (value, self.b)

  ctr = 1
  while ctr <= self.b:
    if self.bins[hk] is None:
      return -ctr

    if self.bins[hk] == value and not self.deleted[hk]:
      self.deleted[hk] = True
      return ctr

    hk = self.probeFunction (hk, self.b, ctr)
    ctr += 1

  return -self.b

Let’s review the performance of open addressing by considering how many probes it
takes to locate an element in the hash table. Figure 5-4 shows the results for both
successful and unsuccessful searches, using the same list of 213,557 words as before.
As the number of bins increases—from 224,234 (or 95.2% full) to 639,757 (or 33.4%
full)—you can see how the number of probes decreases dramatically. The top half of
this figure shows the average (and worst) number of probes for a successful search
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while the bottom presents the same information for unsuccessful searches. In brief,
open addressing reduces the overall storage used but requires noticeably more
probes in the worst case. A second implication is that linear probing leads to more
probes due to clustering.

Figure 5-4. Performance of open addressing

Computing the load factor for a hash table describes the expected performance for
searching and insertions. If the load factor is too high, the number of probes to
locate an item becomes excessive, whether in a bucket’s linked list or a chain of bins
in open addressing. A hash table can increase the number of bins and reconstitute
itself using a process known as “rehashing,” an infrequent operation that reduces the
load factor, although it is a costly O(n) operation. The typical way to do this is to
double the number of bins and add one (because hash tables usually contain an odd
number of bins). Once more bins are available, all existing elements in the hash
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table are rehashed and inserted in the new structure. This expensive operation
reduces the overall cost of future searches, but it must be run infrequently; other‐
wise, you will not observe the amortized O(1) performance of the hash tables.

A hash table should rehash its contents when it detects uneven distribution of ele‐
ments. This can be done by setting a threshold value that will trigger a rehash when
the load factor for the hash table exceeds that value. The default threshold load fac‐
tor for the java.util.Hashtable class is 0.75; if the threshold is large enough, the
hash table will never rehash.

These examples use a fixed set of strings for the hash table. When confronted with
this special case, it is possible to achieve optimal performance by using perfect hash‐
ing, which uses two hash functions. A standard hash() function indexes into the pri‐
mary table, H. Each bin, H[i], then points to a smaller secondary hash table, Si, that
has an associated hash function hashi. If there are k keys that hash to bin H[i], Si will
contain k2 bins. This seems like a lot of wasted memory, but judicious choice of the
initial hash function can reduce this to an amount similar to previous variations.
The selection of appropriate hash functions guarantees there are no collisions in the
secondary tables. This means we have an algorithm with constant O(1) perfor‐
mance in every case.

Details on the analysis of perfect hashing can be found in (Cormen et al., 2009).
Doug Schmidt (1990) has written an excellent paper on perfect hashing generation
and there are freely available perfect hash function generators in various program‐
ming languages. GPERF for C and C++ can be downloaded from http://
www.gnu.org/software/gperf, and JPERF for Java can be downloaded from http://
www.anarres.org/projects/jperf.

Bloom Filter
Hash-Based Search stores the full set of values from a collection C in a hash table
H, whether in linked lists or using open addressing. In both cases, as more elements
are added to the hash table, the time to locate an element increases unless you also
increase the amount of storage (in this case, the number of bins). Indeed, this is the
behavior expected of all other algorithms in this chapter and we only seek a reason‐
able trade-off in the amount of space required to reduce the number of comparisons
when looking for an element in the collection.

A Bloom Filter provides an alternative bit array structure B that ensures constant
performance when adding elements from C into B or checking whether an element
has not been added to B; amazingly, this behavior is independent of the number of
items already added to B. There is a catch, however; with a Bloom Filter, checking
whether an element is in B might return a false positive even though the element
does not exist in C. The Bloom Filter can accurately determine when an element
has not been added to B, so it never returns a false negative.
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In Figure 5-5, two values, u and v, have been inserted into the bit array, B. The table
at the top of the figure shows the bit positions computed by k = 3 hash functions. As
you can see, the Bloom Filter can quickly demonstrate that a third value w has not
been inserted into B, because one of its k computed bit values is zero (bit 6 in this
case). However for value x, it returns a false positive since that value was not inser‐
ted, yet all k of its computed bit values are one.

Bloom Filter Summary
Best, Average, Worst: O(k)

create(m)

  return bit array of m bits 
end

add (bits,value)

  foreach hashFunction hf 

    setbit = 1 << hf(value) 

    bits |= setbit 
end

search (bits,value)
  foreach hashFunction hf
    checkbit = 1 << hf(value)

    if checkbit | bits = 0 then 
      return false

  return true 
end

Storage is fixed in advance to m bits.

There are k hash functions that compute (potentially) different bit positions.

The << left shift operator efficiently computes 2hf(value).

Set k bits when inserting value.

When searching for a value, if a computed bit is zero then that value can’t be
present.

It may yet be the case that all bits are set but value was never added: false posi‐
tive.
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Input/Output
A Bloom Filter processes values much like Hash-Based Search. The algorithm
starts with a bit array of m bits, all set to zero. There are k hash functions that
compute (potentially different) bit positions within this bit array when values are
inserted.

The Bloom Filter returns false when it can demonstrate that a target element t has
not yet been inserted into the bit array, and by extension does not exist in the collec‐
tion C. The algorithm may return true as a false positive if the target element t was
not inserted into the bit array.

Figure 5-5. Bloom Filter example

Context
A Bloom Filter demonstrates efficient memory usage but it is only useful when false
positives can be tolerated. Use a Bloom Filter to reduce the number of expensive
searches by filtering out those that are guaranteed to fail—for example, use a Bloom
Filter to confirm whether to conduct an expensive search over disk-based storage.

Solution
A Bloom Filter needs m bits of storage. The implementation in Example 5-10 uses
Python’s ability to work with arbitrarily large “bignum” values.

Example 5-10. Python Bloom Filter

class bloomFilter:
  def __init__(self, size = 1000, hashFunctions=None):
    """
    Construct a bloom filter with size bits (default: 1000) and the
    associated hash functions.
    """
    self.bits = 0
    self.size = size
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    if hashFunctions is None:
      self.k = 1
      self.hashFunctions = [lambda e, size : hash(e) % size]
    else:
      self.k = len(hashFunctions)
      self.hashFunctions = hashFunctions

  def add (self, value):
    """Insert value into the bloom filter."""
    for hf in self.hashFunctions:
      self.bits |= 1 << hf (value, self.size)

  def __contains__ (self, value):
    """
    Determine whether value is present. A false positive might be
    returned even if the element is not present. However, a false
    negative will never be returned (i.e., if the element is
    present, then it will return True).
    """
    for hf in self.hashFunctions:
      if self.bits & 1 << hf (value, self.size) == 0:
        return False

    # might be present
    return True

This implementation assumes the existence of k hash functions, each of which takes
the value to be inserted and the size of the bit array. Whenever a value is added, k
bits are set in the bit array, based on the individual bit positions computed by the
hash functions. This code uses the bitwise shift operator << to shift a 1 to the appro‐
priate bit position, and the bitwise or operator (|) to set that bit value. To determine
whether a value has been added, check the same k bits from these hash functions
using the bitwise and operator (&); if any bit position is set to 0, you know the value
could not have been added, so it returns False. However, if these k bit positions are
all set to 1, you can only state that the value “might” have been added.

Analysis
The total storage required for a Bloom Filter is fixed to be m bits, and this won’t
increase regardless of the number of values stored. Additionally, the algorithm only
requires a fixed number of k probes, so each insertion and search can be processed
in O(k) time, which is considered constant. It is for these reasons that we present
this algorithm as a counterpoint to the other algorithms in this chapter. It is chal‐
lenging to design effective hash functions to truly distribute the computed bits for
the values to be inserted into the bit array. While the size of the bit array is constant,
it may need to be quite large to reduce the false positive rate. Finally, there is no
ability to remove an element from the filter since that would potentially disrupt the
processing of other values.
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The only reason to use a Bloom Filter is that it has a predicable false positive rate,
pk, assuming the k hash functions are uniformly random (Bloom, 1970). A reasona‐
bly accurate computation for pk is:

pk =
1 − 1 − 1

m
kn k

2

where n is the number of values already added (Bose et al., 2008). We empirically
computed the false positive rate as follows:

1. Randomly remove 2,135 words from the list of 213,557 words (1% of the full
list) and insert the remaining 211,422 words into a Bloom Filter.

2. Count the false positives when searching for the missing 2,135 words.
3. Count the false positives when searching for 2,135 random strings (of between

2 and 10 lowercase letters).

We ran trials for m with values of 100,000 to 2,000,000 (steps of 10,000). We used
k = 3 hash functions. The results are found in Figure 5-6.

Figure 5-6. Bloom Filter example

If you know in advance that you want your false positive rate to be smaller than
some small value, you need to set k and m after estimating the number of elements
n to insert. The literature suggests trying to ensure 1 – (1 – 1/m)kn is close to 1/2.
For example, to ensure a false positive rate of smaller than 10% for the word list, be
sure to set m to at least 1,120,000 or a total of 131,250 bytes.
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Binary Search Tree
Binary searching on an array in memory is efficient, as we have already seen. How‐
ever, using ordered arrays becomes drastically less effective when the underlying
collection changes frequently. With a dynamic collection, we must adopt a different
data structure to maintain acceptable search performance. Hash-Based Search can
handle dynamic collections, but we might select a hash table size that is much too
small for effective resource usage; we often have no a priori knowledge of the num‐
ber of elements to store so it is hard to select the proper size of the hash table. Hash
tables do not allow you to iterate over their elements in sorted order.

An alternate strategy is to use a search tree to store dynamic sets. Search trees per‐
form well both in memory and in secondary storage and make it possible to return
ordered ranges of elements together, something hash tables are unable to accom‐
plish. The most common type of search tree is the binary search tree (BST), which is
composed of nodes as shown in Figure 5-7. Each node contains a single value in the
collection and stores references to potentially two child nodes, left and right.

Use a binary search tree when:

• You must traverse the data in ascending (or descending) order
• The data set size is unknown, and the implementation must be able to handle

any possible size that will fit in memory
• The data set is highly dynamic, and there will be many insertions and deletions

during the collection’s lifetime

Input/Output
The input and output to algorithms using search trees is the same as for Binary
Search. Each element e from a collection C to be stored in the binary search tree
needs to have one or more properties that can be used as a key k; these keys deter‐
mine the universe U and must be fully ordered. That is, given two key values ki and
kj, either ki equals kj, ki > kj, or ki < kj.

When the values in the collections are primitive types (such as strings or integers),
the values themselves can be the key values. Otherwise, they are references to the
structures that contain the values.

Context
A BST is a nonempty collection of nodes containing ordered values known as keys.
The top root node is the ancestor of all other nodes in the BST. Each node n may
potentially refer to two binary nodes, nleft and nright, each the root of BSTs left and
right. A BST ensures the binary search tree property, namely, that if k is the key for
node n, then all keys in left ≤ k and all the keys in right ≥ k. If both nleft and nright are
null, then n is a leaf node. Figure 5-7 shows a small example of a BST where each
node contains an integer value. The root contains the value 7 and there are four leaf
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nodes containing values 1, 6, 10, and 17. An interior node, such as 5, has both a par‐
ent node and some children nodes. You can see that finding a key in the tree in
Figure 5-7 requires examining at most four nodes, starting with the root.

A BST might not be balanced; as elements are added, some branches may end up
relatively short while others become longer. This produces suboptimal search times
on the longer branches. In the worst case, the structure of a BST might degenerate
and take on the basic properties of a list. Consider the same values for Figure 5-7
arranged as shown in Figure 5-8. Although the structure fits the strict definition of a
BST, the structure is effectively a linked list because the right subtree of each node
is empty.

Figure 5-7. A simple binary search tree

Figure 5-8. A degenerate binary search tree
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You must balance the tree to avoid a skewed tree that has a few branches that are
much longer than the other branches. We present a full solution for a balanced AVL
tree supporting insertion and deletion of values.

Solution
The initial Python structure is shown in Example 5-11 together with the add meth‐
ods necessary to add values to the BST. The methods are recursive, going down
a branch from the root until an empty place for the new node is found at the right
position.

Example 5-11. Python Binary Search Tree class definition

class BinaryNode:
  def __init__(self, value = None):
    """Create binary node."""
    self.value = value
    self.left = None
    self.right = None

  def add (self, val):
    """Adds a new node to BST with given value."""
    if val <= self.value:
      if self.left:
        self.left.add (val)
      else:
        self.left = BinaryNode(val)
    else:
      if self.right:
        self.right.add(val)
      else:
        self.right = BinaryNode(val)

class BinaryTree:
  def __init__(self):
    """Create empty BST."""
    self.root = None

  def add (self, value):
    """Insert value into proper location in BST."""
    if self.root is None:
      self.root = BinaryNode(value)
    else:
      self.root.add (value)

Adding a value to an empty BST creates the root node; thereafter, the inserted val‐
ues are placed into new BinaryNode objects at the appropriate place in the BST.
There can be two or more nodes in the BST with the same value, but if you want to
restrict the tree to conform to set-based semantics (such as defined in the Java Col‐
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lections Framework) you can modify the code to prevent the insertion of duplicate
keys. For now, assume that duplicate keys may exist in the BST.

With this structure in place, the nonrecursive contains(value) method in the
BinaryTree class, shown in Example 5-12, searches for a target value within the
BST. Rather than perform a recursive function call, this simply traverses left or
right pointers until it finds the target or determines that the target does not exist in
the BST.

Example 5-12. BinaryTree contains method

def __contains__ (self, target):
  """Check whether BST contains target value."""
  node = self.root
  while node:
    if target < node.value:
      node = node.left
    ielif target > node.value:
      node = node.right
    else:
      node = node.right
  return true

The efficiency of this implementation depends on whether the BST is balanced. For
a balanced tree, the size of the collection being searched is cut in half with each pass
through the while loop, resulting in O(log n) behavior. However, for a degenerate
binary tree such as shown in Figure 5-8, the performance is O(n). To preserve opti‐
mal performance, you need to balance a BST after each addition (and deletion).

AVL trees (named after their inventors, Adelson-Velskii and Landis) were the first
self-balancing BST, invented in 1962. Let’s define the concept of an AVL node’s
height. The height of a leaf node is 0, because it has no children. The height of a
nonleaf node is 1 greater than the maximum of the height values of its two children
nodes. For consistency, the height of a nonexistent child node is –1.

An AVL tree guarantees the AVL property at every node, namely, that the height
difference for any node is –1, 0, or 1. The height difference is defined as height(left) –
height(right)—that is, the height of the left subtree minus the height of the right sub‐
tree. An AVL tree must enforce this property whenever a value is inserted or
removed from the tree. Doing so requires two helper methods: computeHeight to
compute the height of a node and heightDifference to compute the height differ‐
ence. Each node in the AVL tree stores its height value, which increases the overall
storage requirements.

Figure 5-9 demonstrates what happens when you insert the values 50, 30, and 10
into a BST in that order. As shown, the resulting tree no longer satisfies the AVL
property because the height of the root’s left subtree is 1 while the height of its non-
existing right subtree is –1, resulting in a height difference of 2. Imagine “grabbing”
the 30 node in the original tree and rotating the tree to the right (or clockwise), and
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pivoting around the 30 node to make 30 the root, thereby creating a balanced tree
(shown in Figure 5-10). In doing so, only the height of the 50 node has changed
(dropping from 2 to 0) and the AVL property is restored.

Figure 5-9. Unbalanced AVL tree

Figure 5-10. Balanced AVL tree

This rotate right operation alters the structure of a subtree within an unbalanced
BST; as you can imagine, there is a similar rotate left operation.

What if this tree had other nodes, each of which were balanced and satisfied the
AVL property? In Figure 5-11, each of the shaded triangles represents a potential
subtree of the original tree; each is labeled by its position, so 30R is the subtree rep‐
resenting the right subtree of node 30. The root is the only node that doesn’t sup‐
port the AVL property. The various heights in the tree are computed assuming the
node 10 has some height k.

Figure 5-11. Balanced AVL tree with subtrees
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The modified BST still guarantees the binary search property. All of the key values in
the subtree 30R are greater than or equal to 30. The other subtrees have not
changed positions relative to each other, so they continue to guarantee the binary
search property. Finally, the value 30 is smaller than 50, so the new root node
is valid.

Consider adding three values to an empty AVL tree; Figure 5-12 shows the four dif‐
ferent insert orders that result in an unbalanced tree. In the Left-Left case you per‐
form a rotate right operation to rebalance the tree; similarly, in the Right-Right case
you perform a rotate left operation. However, in the Left-Right case, you cannot
simply rotate right because the “middle” node, 10, cannot become the root of the
tree; its value is smaller than both of the other two values.

Figure 5-12. Four unbalanced scenarios

Fortunately, you can resolve the issue by first completing a rotate left on the child
node 10 to convert the tree into a Left-Left case; then you’ll be able to perform the
rotate right step as described earlier. Figure 5-13 demonstrates this situation on a
larger tree. After the rotate left operation, the tree is identical to the earlier tree on
which the rotate right operation was described. A similar argument explains how to
handle the Right-Left case.

Figure 5-13. Rebalancing the Left-Right scenario
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The recursive add operation shown in Example 5-13 has the same structure as
Example 5-11 and the difference is that it may need to rebalance the tree once the
value is inserted as a newly added leaf node. The BinaryNode add operation adds the
new value to the BST rooted at that node and returns a BinaryNode object, which is
to become the new root of that BST. This happens because a rotation operation
moves a new node to be the root of that BST. Because BSTs are recursive structures,
you should realize that the rotation can happen at any point. It is for this reason that
the recursive invocation within add has the form self.left = self.addToSubTree
(self.left, val). After adding val to the subtree rooted at self.left, that sub‐
tree might have rebalanced to have a new node to be its root, and that new node
must now become the left child of self. The final act of add is to compute its height
to allow the recursion to propagate back up to the original root of the tree.

Example 5-13. add methods in BinaryTree and BinaryNode

class BinaryTree:

  def add (self, value):
    """Insert value into proper location in Binary Tree."""
    if self.root is None:
      self.root = BinaryNode(value)
    else:
      self.root = self.root.add (value)

class BinaryNode:
  def __init__(self, value = None):
    """Create binary node."""
    self.value  = value
    self.left   = None
    self.right  = None
    self.height = 0

  def computeHeight (self):
    """Compute height of node in BST from children."""
    height = -1
    if self.left:
      height = max(height, self.left.height)
    if self.right:
      height = max(height, self.right.height)

    self.height = height + 1

  def heightDifference(self):
    """Compute height difference of node's children in BST."""
    leftTarget = 0
    rightTarget = 0
    if self.left:
      leftTarget = 1 + self.left.height
    if self.right:
      rightTarget = 1 + self.right.height

Searching

Binary Search Tree | 125



    return leftTarget - rightTarget

  def add (self, val):
    """Adds a new node to BST with value and rebalance as needed."""
    newRoot = self
    if val <= self.value:
      self.left = self.addToSubTree (self.left, val)
      if self.heightDifference() == 2:
        if val <= self.left.value:
          newRoot = self.rotateRight()
        else:
          newRoot = self.rotateLeftRight()
    else:
      self.right = self.addToSubTree (self.right, val)
      if self.heightDifference() == -2:
        if val > self.right.value:
          newRoot = self.rotateLeft()
        else:
          newRoot = self.rotateRightLeft()

    newRoot.computeHeight()
    return newRoot

  def addToSubTree (self, parent, val):
    """Add val to parent subtree (if exists) and return root in case it
    has changed because of rotation."""
    if parent is None:
      return BinaryNode(val)

    parent = parent.add (val)
    return parent

The compact implementation of add shown in Example 5-13 has an elegant behav‐
ior: a form of recursion that makes a choice between two possible recursive func‐
tions at each iteration. The method recursively traverses the tree, heading left or
right as circumstances require, until addToSubTree eventually is asked to add val to
an empty subtree (i.e., when parent is None). This terminates the recursion and
ensures the newly added value is always a leaf node in the BST. Once this action is
completed, each subsequent recursive call ends and add determines whether any
rotation is needed to maintain the AVL property. These rotations start deep in the
tree (i.e., nearest to the leaves) and work their way back to the root. Because the tree
is balanced, the number of rotations is bounded by O(log n). Each rotation method
has a fixed number of steps to perform; thus the extra cost for maintaining the
AVL property is bounded by O(log n). Example 5-14 contains the rotateRight and
rotateRightLeft operations.
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Example 5-14. rotateRight and rotateRightLeft methods

def rotateRight (self):
  """Perform right rotation around given node."""
  newRoot = self.left
  grandson = newRoot.right
  self.left = grandson
  newRoot.right = self

  self.computeHeight()
  return newRoot

def rotateRightLeft (self):
  """Perform right, then left rotation around given node."""
  child = self.right
  newRoot = child.left
  grand1  = newRoot.left
  grand2  = newRoot.right
  child.left = grand2
  self.right = grand1

  newRoot.left = self
  newRoot.right = child

  child.computeHeight()
  self.computeHeight()
  return newRoot

For completeness, Example 5-15 lists the rotateLeft and rotateLeftRight
methods.

Example 5-15. rotateLeft and rotateLeftRight methods

def rotateLeft (self):
  """Perform left rotation around given node."""
  newRoot = self.right
  grandson = newRoot.left
  self.right = grandson
  newRoot.left = self

  self.computeHeight()
  return newRoot

def rotateLeftRight (self):
  """Perform left, then right rotation around given node."""
  child = self.left
  newRoot = child.right
  grand1  = newRoot.left
  grand2  = newRoot.right
  child.right = grand1
  self.left = grand2
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  newRoot.left = child
  newRoot.right = self

  child.computeHeight()
  self.computeHeight()
  return newRoot

To complete the dynamic behavior of the BST, we need to be able to remove ele‐
ments efficiently. When removing a value from the BST, it is critical to maintain the
binary search tree property. If the target node containing the value to be removed
has no left child, you can simply “lift” up its right child node to take its place. Other‐
wise, find the node with the largest value in the tree rooted at the left child. You
can swap that largest value into the target node. Note that the largest value in the
left subtree has no right child, so you can easily remove it by moving up its left
child, should it have one, as shown in Figure 5-14. Example 5-16 shows the neces‐
sary methods.

Figure 5-14. Locating largest descendant in left subtree

Example 5-16. BinaryNode remove and removeFromParent methods

def removeFromParent (self, parent, val):
  """ Helper method for remove. Ensures proper behavior when
  removing node that has children."""
  if parent:
    return parent.remove (val)
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  return None

def remove (self, val):
  """
   Remove val from Binary Tree. Works in conjunction with
   remove method in Binary Tree.
  """
  newRoot = self
  if val == self.value:
    if self.left is None:
       return self.right

    child = self.left
    while child.right:
      child = child.right

    childKey = child.value;
    self.left = self.removeFromParent (self.left, childKey)
    self.value = childKey;

    if self.heightDifference() == -2:
      if self.right.heightDifference() <= 0:
        newRoot = self.rotateLeft()
      else:
        newRoot = self.rotateRightLeft()
  elif val < self.value:
    self.left = self.removeFromParent (self.left, val)
    if self.heightDifference() == -2:
      if self.right.heightDifference() <= 0:
        newRoot = self.rotateLeft()
      else:
        newRoot = self.rotateRightLeft()
  else:
    self.right = self.removeFromParent (self.right, val)
    if self.heightDifference() == 2:
      if self.left.heightDifference() >= 0:
        newRoot = self.rotateRight()
      else:
        newRoot = self.rotateLeftRight()

  newRoot.computeHeight()
  return newRoot

The remove code has a structure similar to add. Once the recursive call locates the
target node that contains the value to be removed, it checks to see whether there is a
larger descendant in the left subtree to be swapped. As each recursive call returns,
observe how it checks whether any rotation is needed. Because the depth of the tree
is bounded by O(log n), and each rotation method executes a constant time, the
total execution time for remove is bounded by O(log n).
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The final logic we expect in a BST is the ability to iterate over its contents in sorted
order; this capability is simply not possible with hash tables. Example 5-17 contains
the necessary changes to BinaryTree and BinaryNode.

Example 5-17. Support for in-order traversal

class BinaryTree:
  def __iter__(self):
    """In order traversal of elements in the tree."""
    if self.root:
      return self.root.inorder()

class BinaryNode:
  def inorder(self):
    """In order traversal of tree rooted at given node."""
    if self.left:
      for n in self.left.inorder():
        yield n

    yield self.value

    if self.right:
      for n in self.right.inorder():
        yield n

With this implementation in place, you can print out the values of a BinaryTree in
sorted order. The code fragment in Example 5-18 adds 10 integers (in reverse order)
to an empty BinaryTree and prints them out in sorted order:

Example 5-18. Iterating over the values in a BinaryTree

bt = BinaryTree()
for i in range(10, 0, -1):
  bt.add(i)
for v in bt:
  print (v)

Analysis
The average-case performance of search in a balanced AVL tree is the same as a
Binary Search (i.e., O(log n)). Note that no rotations ever occur during a search.

Self-balancing binary trees require more complicated code to insert and remove
than simple binary search trees. If you review the rotation methods, you will see that
they each have a fixed number of operations, so these can be treated as behaving in
constant time. The height of a balanced AVL will always be on the order of O(log n)
because of the rotations; thus there will never be more than O(log n) rotations per‐
formed when adding or removing an item. We can then be confident that insertions
and deletions can be performed in O(log n) time. The trade-off is usually worth it in
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terms of runtime performance gains. AVL trees store additional height information
with each node, increasing storage requirements.

Variations
One natural extension for a binary tree is an n-way tree, where each node has more
than one value, and correspondingly, more than two children. A common version
of such trees is called the B-Tree, which performs very well when implementing
relational databases. A complete analysis of B-Trees can be found in (Cormen et al.,
2009) and there are helpful online B-Tree tutorials with examples.

Another common self-balancing binary tree is the red–black tree. Red–black trees
are approximately balanced and guarantee that no branch has a height more than
twice that of any other branch in the tree. This relaxed guarantee improves the per‐
formance of insert and delete by reducing the number of rotations needed. We pro‐
vide an implementation in the algs.model.tree.BalancedTree class found in the
repository. Further details can be found in (Cormen et al., 2009).
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6
Graph Algorithms

Graphs are fundamental structures that represent complex structured information.
The images in Figure 6-1 are all sample graphs.

In this chapter, we investigate common ways to represent graphs and associated
algorithms that frequently occur. Inherently, a graph contains a set of elements,
known as vertices, and relationships between pairs of these elements, known as
edges. We use these terms consistently in this chapter; other descriptions might use
the terms “node” and “link” to represent the same information. We consider only
simple graphs that avoid (a) self-edges from a vertex to itself, and (b) multiple edges
between the same pair of vertices.

Given the structure defined by the edges in a graph, many problems can be stated in
terms of paths from a source vertex to a destination vertex in the graph constructed
using the existing edges in the graph. Sometimes an edge has an associated numeric
value known as its weight; sometimes an edge is directed with a specific orientation
(like a one-way street). In the Single-Source Shortest Path algorithm, one is given a
specific vertex, s, and asked to compute the shortest path (by sum of edge weights)
to all other vertices in the graph. The All-Pairs Shortest Path problem requires that
the shortest path be computed for all pairs (u, v) of vertices in the graph.

Some problems seek a deeper understanding of the underlying graph structure. For
example, the minimum spanning tree (MST) of an undirected, weighted graph is a
subset of that graph’s edges such that (a) the original set of vertices is still connected
in the MST, and (b) the sum total of the weights of the edges in the MST is mini‐
mum. We show how to efficiently solve this problem using Prim’s Algorithm.
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Figure 6-1. (a) The genealogy of Charles II of Spain (1661–1700); (b) a molec‐
ular network related to liver cancer

Graphs
A graph G = (V, E) is defined by a set of vertices, V, and a set of edges, E, over pairs
of these vertices. There are three common types of graphs:

Undirected, unweighted graphs
These model relationships between vertices (u, v) without regard for the direc‐
tion of the relationship. These graphs are useful for capturing symmetric infor‐
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mation. For example, in a graph modeling a social network, if Alice is a friend
of Bob, then Bob is a friend of Alice.

Directed graphs
These model relationships between vertices (u, v) that are distinct from the
relationship between (v, u), which may or may not exist. For example, a pro‐
gram to provide driving directions must store information on one-way streets
to avoid giving illegal directions.

Weighted graphs
These model relationships where there is a numeric value known as a weight
associated with the relationship between vertices (u, v). Sometimes these values
can store arbitrary non-numeric information. For example, the edge between
towns A and B could store the mileage between the towns, the estimated travel‐
ing time in minutes, or the name of the street or highway connecting
the towns.

The most highly structured of the graphs—a directed, weighted graph—defines a
nonempty set of vertices {v0, v1, …, vn−1}, a set of directed edges between pairs of
distinct vertices (such that every pair has at most one edge between them in each
direction), and a positive weight associated with each edge. In many applications,
the weight is considered to be a distance or cost. For some applications, we may
want to relax the restriction that the weight must be positive (e.g., a negative weight
could reflect a loss, not a profit), but we will be careful to declare when
this happens.

Consider the directed, weighted graph in Figure 6-2, which is composed of six verti‐
ces and five edges. We could store the graph using adjacency lists, as shown in
Figure 6-3, where each vertex vi maintains a linked list of nodes, each of which
stores the weight of the edge leading to an adjacent vertex of vi. Thus, the base struc‐
ture is a one-dimensional array of vertices in the graph.

Figure 6-2. Sample directed, weighted graph

Figure 6-4 shows how to store the directed, weighted graph as an n-by-n adjacency
matrix A of integers, indexed in both dimensions by the vertices. The entry A[i][j]
stores the weight of the edge from vi to vj; when there is no edge from vi to vj, A[i][j]
is set to some special value, such as 0, –1 or even −∞. We can use adjacency lists and
matrices to store unweighted graphs as well (perhaps using the value 1 to represent
an edge). With an adjacency matrix, checking whether an edge (vi, vj) exists takes
constant time, but with an adjacency list, it depends on the number of edges in the
list for vi. In contrast, with an adjacency matrix, you need more space and you lose
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the ability to identify all incident edges to a vertex in time proportional to the num‐
ber of those edges; instead, you must check all possible edges, which becomes signifi‐
cantly more expensive when the number of vertices becomes large. You should use
an adjacency matrix representation when working with dense graphs in which
nearly every possible edge exists.

Figure 6-3. Adjacency list representation of directed, weighted graph

We use the notation <v0, v1, …, vk−1> to describe a path of k vertices in a graph that
traverses k − 1 edges (vi, vi+1) for 0 ≤ i < k − 1; paths in a directed graph honor the
direction of the edge. In Figure 6-2, the path <v4, v5, v2, v4, v1> is valid. In this graph
there is a cycle, which is a path of vertices that includes the same vertex multiple
times. A cycle is typically represented in its most minimal form. If a path exists
between any two pairs of vertices in a graph, then that graph is connected.

Figure 6-4. Adjacency matrix representation of directed, weighted graph

When using an adjacency list to store an undirected graph, the same edge (u, v)
appears twice: once in the linked list of neighbor vertices for u and once for v. Thus,
undirected graphs may require up to twice as much storage in an adjacency list as a
directed graph with the same number of vertices and edges. Doing so lets you locate
the neighbors for a vertex u in time proportional to the number of actual neighbors.
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When using an adjacency matrix to store an undirected graph, entry A[i][j] = A[j]
[i].

Data Structure Design
We implement a C++ Graph class to store a directed (or undirected) graph using an
adjacency list representation implemented with core classes from the C++ Standard
Template Library (STL). Specifically, it stores the information as an array of list
objects, with one list for each vertex. For each vertex u there is a list of Integer
Pair objects representing the edge (u, v) of weight w.

The operations on graphs are subdivided into several categories:

Create
A graph can be initially constructed from a set of n vertices, and it may be
directed or undirected. When a graph is undirected, adding edge (u, v) also
adds edge (v, u).

Inspect
We can determine whether a graph is directed, find all incident edges to a given
vertex, determine whether a specific edge exists, and determine the weight
associated with an edge. We can also construct an iterator that returns the
neighboring edges (and their weights) for any vertex in a graph.

Update
We can add edges to (or remove edges from) a graph. It is also possible to add a
vertex to (or remove a vertex from) a graph, but algorithms in this chapter do
not need to add or remove vertices.

We begin by discussing ways to explore a graph. Two common search strategies are
Depth-First Search and Breadth-First Search.

Depth-First Search
Consider the maze shown on the left in Figure 6-5. After some practice, a child can
rapidly find the path that stretches from the start box labeled s to the target box
labeled t. One way to solve this problem is to make as much forward progress as
possible and randomly select a direction whenever a choice is possible, marking
where you have come from. If you ever reach a dead end or you revisit a location
you have already seen, then backtrack until an untraveled branch is found and
set off in that direction. The numbers on the right side of Figure 6-5 reflect the
branching points of one such solution; in fact, every square in the maze is visited in
this solution.

We can represent the maze in Figure 6-5 by creating a graph consisting of vertices
and edges. A vertex is created for each branching point in the maze (labeled by
numbers on the right in Figure 6-5) as well as “dead ends.” An edge exists only if
there is a direct path in the maze between the two vertices where no choice in direc‐
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tion can be made. The undirected graph representation of the maze from Figure 6-5
is shown in Figure 6-6; each vertex has a unique identifier.

Figure 6-5. A small maze to get from s to t

Figure 6-6. Graph representation of maze from Figure 6-5

To solve the maze, we need only find a path in the graph G = (V, E) of Figure 6-5
from the start vertex, s, to the target vertex, t. In this example, all edges are undirec‐
ted, but we could easily consider directed edges if the maze imposed such
restrictions.

The heart of Depth-First Search is a recursive dfsVisit(u) operation that visits a
vertex u that has not yet been visited. dfsVisit(u) records its progress by coloring
vertices one of three colors:

White
Vertex has not yet been visited.

Gray
Vertex has been visited, but it may have an adjacent vertex that has not yet been
visited.
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Black
Vertex has been visited and so have all of its adjacent vertices.

Depth-First Search Summary
Best, Average, Worst: O(V+E)

depthFirstSearch (G,s)
  foreach v in V do
    pred[v] = -1

    color[v] = White 
  dfsVisit(s)
end

dfsVisit(u)
  color[u] = Gray
  foreach neighbor v of u do

    if color[v] = White then 
      pred[v] = u
      dfsVisit(v)

  color[u] = Black 
end

Initially all vertices are marked as not visited.

Find unvisited neighbor and head in that direction.

Once all neighbors are visited, this vertex is done.

Initially, each vertex is colored white to represent that it has not yet been visited,
and Depth-First Search invokes dfsVisit on the source vertex, s. dfsVisit(u) col‐
ors u gray before recursively invoking dfsVisit on all adjacent vertices of u that
have not yet been visited (i.e., they are colored white). Once these recursive calls
have completed, u can be colored black, and the function returns. When the recur‐
sive dfsVisit function returns, Depth-First Search backtracks to an earlier vertex
in the search (indeed, to a vertex that is colored gray), which may have an unvisited
adjacent vertex that must be explored. Figure 6-7 contains an example showing the
partial progress on a small graph.

For both directed and undirected graphs, Depth-First Search investigates the graph
from s until all vertices reachable from s are visited. During its execution, Depth-
First Search traverses the edges of the graph, computing information that reveals
the inherent, complex structure of the graph. For each vertex, Depth-First Search
records pred[v], the predecessor vertex to v that can be used to recover a path from
the source vertex s to the vertex v.

This computed information is useful to a variety of algorithms built on Depth-First
Search, including topological sort and identifying strongly connected components.
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Figure 6-7. Depth-First Search example

Given the graph in Figure 6-6 and assuming the neighbors of a vertex are listed in
increasing numerical order, the information computed during the search is shown
in Figure 6-8. The coloring of the vertices of the graph shows the snapshot just after
the fifth vertex (in this case, vertex 13) is colored black. Some parts of the graph
(i.e., the vertices colored black) have been fully searched and will not be revisited.
Note that white vertices have not been visited yet and gray vertices are currently
being recursively visited by dfsVisit.

Depth-First Search has no global awareness of the graph, and so it will blindly
search the vertices <5, 6, 7, 8>, even though these are in the wrong direction from
the target, t. Once Depth-First Search completes, the pred[] values can be used to
generate a path from the original source vertex, s, to each vertex in the graph.
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Figure 6-8. Computed pred for a sample undirected graph; snapshot taken
after five vertices are colored black

Note that this path may not be the shortest possible path; when Depth-First Search
completes, the path from s to t has seven vertices <s, 1, 3, 4, 5, 9, t>, while a shorter
path of five vertices exists <s, 6, 5, 9, t>. Here the notion of a “shortest path” refers to
the number of decision points between s and t.

Input/Output
The input is a graph G = (V, E) and a source vertex s ∈ V representing the start
location.

Depth-First Search produces the pred[v] array that records the predecessor vertex
of v based on the depth-first search ordering.

Context
Depth-First Search only needs to store a color (either white, gray, or black) with
each vertex as it traverses the graph. Thus, Depth-First Search requires only O(n)
overhead in storing information while it explores the graph starting from s.

Depth-First Search can store its processing information in arrays separately from
the graph. Depth-First Search only requires that it can iterate over the vertices in a
graph that are adjacent to a given vertex. This feature makes it easy to perform
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Depth-First Search on complex information, since the dfsVisit function accesses
the original graph as a read-only structure.

Solution
Example 6-1 contains a sample C++ solution. Note that vertex color information is
used only within the dfsVisit methods.

Example 6-1. Depth-First Search implementation

// visit a vertex, u, in the graph and update information
void dfsVisit (Graph const &graph, int u,                  /* in */
         vector<int> &pred, vector<vertexColor> &color) {  /* out */
  color[u] = Gray;

  // process all neighbors of u.
  for (VertexList::const_iterator ci = graph.begin (u);
       ci != graph.end (u); ++ci) {
    int v = ci->first;

    // Explore unvisited vertices immediately and record pred[].
    // Once recursive call ends, backtrack to adjacent vertices.
    if (color[v] == White) {
      pred[v] = u;
      dfsVisit (graph, v, pred, color);
    }
  }

  color[u] = Black;  // our neighbors are complete; now so are we.
}

/**
 * Perform Depth-First Search starting from vertex s, and compute
 * pred[u], the predecessor vertex to u in resulting depth-first
 * search forest.
 */
void dfsSearch (Graph const &graph, int s,    /* in */
         vector<int> &pred) {                 /* out */
  // initialize pred[] array and mark all vertices White
  // to signify unvisited.
  const int n = graph.numVertices();
  vector<vertexColor> color (n, White);
  pred.assign(n, -1);

  // Search starting at the source vertex.
  dfsVisit (graph, s, pred, color);
}

142 | Chapter 6: Graph Algorithms



Analysis
The recursive dfsVisit function is called once for each vertex in the graph. Within
dfsVisit, every neighboring vertex must be checked; for directed graphs, edges are
traversed once, whereas in undirected graphs they are traversed once and are seen
one other time. In any event, the total performance cost is O(V + E).

Variations
If the original graph is unconnected, then there may be no path between s and some
vertices; these vertices will remain unvisited. Some variations ensure all vertices are
processed by conducting additional dfsVisit executions on the unvisited vertices
in the dfsSearch method. If this is done, pred[] values record a depth-first forest of
depth-first tree search results. To find the roots of the trees in this forest, scan
pred[] to find vertices r whose pred[r] value is –1.

Breadth-First Search
Breadth-First Search takes a different approach from Depth-First Search when
searching a graph. Breadth-First Search systematically visits all vertices in the
graph G = (V, E) that are k edges away from the source vertex s before visiting any
vertex that is k + 1 edges away. This process repeats until no more vertices are
reachable from s. Breadth-First Search does not visit vertices in G that are not
reachable from s. The algorithm works for undirected as well as directed graphs.

Breadth-First Search is guaranteed to find the shortest path in the graph from ver‐
tex s to a desired target vertex, although it may evaluate a rather large number of
nodes as it operates. Depth-First Search tries to make as much progress as possible,
and may locate a path more quickly, which may not be the shortest path.

Figure 6-9 shows the partial progress of Breadth-First-Search on the same small
graph from Figure 6-7. First observe that the gray vertices in the graph are exactly
the ones contained within the queue. Each time through the loop a vertex is
removed from the queue and unvisited neighbors are added.

Breadth-First Search makes its progress without requiring any backtracking. It
records its progress by coloring vertices white, gray, or black, as Depth-First Search
did. Indeed, the same colors and definitions apply. To compare directly with Depth-
First Search, we can take a snapshot of Breadth-First Search executing on the same
graph used earlier in Figure 6-6 after it colors its fifth vertex black (vertex 2) as
shown in Figure 6-10. At the point shown in the figure, the search has colored black
the source vertex s, vertices that are one edge away from s—{ 1, 6, and 8 }—and ver‐
tex 2, which is two edges away from s.

The remaining vertices two edges away from s—{ 3, 5, 7, 14 }—are all in the queue
Q waiting to be processed. Some vertices three edges away from s have also been
visited—{10,11}—and are at the tail of the queue. Note that all vertices within the
queue are colored gray, reflecting their active status.
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Figure 6-9. Breadth-First Search example

Input/Output
The input is a graph G = (V, E) and a source vertex s ∈ V representing the start
location.
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Breadth-First Search produces two computed arrays. dist[v] records the number
of edges in a shortest path from s to v. pred[v] records the predecessor vertex of v
based on the breadth-first search ordering. The pred[] values record the breadth-
first tree search result; if the original graph is unconnected, then all vertices w
unreachable from s have a pred[w] value of –1.

Figure 6-10. Breadth-First Search progress on graph after five vertices are col‐
ored black

Context
Breadth-First Search stores the vertices being processed in a queue, thus there is
O(V) storage. Breadth-First Search is guaranteed to find a shortest path (there may
be ties) in graphs whose vertices are generated “on the fly” (as will be seen in Chap‐
ter 7). Indeed, all paths in the generated breadth-first tree are shortest paths from s
in terms of edge count.

Solution
A sample C++ solution is shown in Example 6-2. Breadth-First Search stores its
state in a queue, and therefore there are no recursive function calls.
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Example 6-2. Breadth-First Search implementation

/**
 * Perform breadth-first search on graph from vertex s, and compute BFS
 * distance and pred vertex for all vertices in the graph.
 */
void bfsSearch (Graph const &graph, int s,             /* in */
                vector<int> &dist, vector<int> &pred)  /* out */
{
  // initialize dist and pred to mark vertices as unvisited. Begin at s
  // and mark as Gray since we haven't yet visited its neighbors.
  const int n = graph.numVertices();
  pred.assign(n, −1);
  dist.assign(n, numeric_limits<int>::max());
  vector<vertexColor> color (n, White);

  dist[s] = 0;
  color[s] = Gray;

  queue<int> q;
  q.push(s);
  while (!q.empty()) {
    int u = q.front();

    // Explore neighbors of u to expand the search horizon
    for (VertexList::const_iterator ci = graph.begin (u);
         ci != graph.end (u); ++ci) {
      int v = ci->first;
      if (color[v] == White) {
        dist[v] = dist[u]+1;
        pred[v] = u;
        color[v] = Gray;
        q.push(v);
      }
    }

    q.pop();
    color[u] = Black;
  }
}

Analysis
During initialization, Breadth-First Search updates information for all vertices,
with performance O(V). When a vertex is first visited (and colored gray), it is inser‐
ted into the queue, and no vertex is added twice. Since the queue can add and
remove elements in constant time, the cost of managing the queue is O(V). Finally,
each vertex is dequeued exactly once and its adjacent vertices are traversed exactly
once. The sum total of the edge loops, therefore, is bounded by the total number of
edges, or O(E). Thus, the total performance is O(V + E).
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Breadth-First Search Summary
Best, Average, Worst: O(V+E)

breadthFirstSearch (G, s)
  foreach v in V do
    pred[v] = -1
    dist[v] = ∞

    color[v] = White 
  color[s] = Gray
  dist[s] = 0

  Q = empty Queue 
  enqueue (Q, s)

  while Q is not empty do
    u = head(Q)
    foreach neighbor v of u do
      if color[v] = White then
        dist[v] = dist[u] + 1
        pred[v] = u
        color[v] = Gray
        enqueue (Q, v)
    dequeue (Q)

    color[u] = Black 
end

Initially all vertices are marked as not visited.

Queue maintains collection of gray nodes that are visited.

Once all neighbors are visited, this vertex is done.

Single-Source Shortest Path
Suppose you want to fly a private plane on the shortest path from St. Johnsbury, VT,
to Waco, TX. Assume you know the distances between the airports for all pairs of
cities and towns that are reachable from each other in one nonstop flight of your
plane. The best-known algorithm to solve this problem, Dijkstra’s Algorithm, finds
the shortest path from St. Johnsbury to all other airports, although the search may
be halted once the shortest path to Waco is known.

In this example, we minimize the distance traversed. In other applications we might
replace distance with time (e.g., deliver a packet over a network as quickly as possi‐
ble) or with cost (e.g., find the cheapest way to fly from St. Johnsbury to Waco). Sol‐
utions to these problems also correspond to shortest paths.

Dijkstra’s Algorithm relies on a data structure known as a priority queue (PQ). A
PQ maintains a collection of items, each of which has an associated integer priority
that represents the importance of an item. A PQ allows one to insert an item, x, with
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its associated priority, p. Lower values of p represent items of higher importance.
The fundamental operation of a PQ is getMin, which returns the item in PQ whose
priority value is lowest (or in other words, is the most important item). Another
operation, decreasePriority, may be provided by a PQ that allows us to locate a spe‐
cific item in the PQ and reduce its associated priority value (which increases its
importance) while leaving the item in the PQ.

Dijkstra’s Algorithm Summary
Best, Average, Worst: O((V+E)*log V)

singleSourceShortest (G, s)
  PQ = empty Priority Queue
  foreach v in V do

    dist[v] = ∞ 
    pred[v] = -1

  dist[s] = 0

  foreach v in V do 
    insert (v, dist[v]) into PQ

  while PQ is not empty do

    u = getMin(PQ) 
    foreach neighbor v of u do
      w = weight of edge (u, v)
      newLen = dist[u] + w

      if newLen < dist[v] then 
        decreasePriority (PQ, v, newLen)
        dist[v] = newLen
        pred[v] = u
end

Initially all vertices are considered to be unreachable.

Populate PQ with vertices by shortest path distance.

Remove vertex that has shortest distance to source.

If discovered a shorter path from s to v, record and update PQ.

The source vertex, s, is known in advance and dist[v] is set to ∞ for all vertices
other than s, whose dist[s] = 0. These vertices are all inserted into the priority
queue, PQ, with priority equal to dist[v]; thus s will be the first vertex removed
from PQ. At each iteration, Dijkstra’s Algorithm removes a vertex from PQ that is
closest to s of all remaining unvisited vertices in PQ. The vertices in PQ are poten‐
tially updated to reflect a closer distance, given the visited vertices seen so far, as
shown in Figure 6-11. After V iterations, dist[v] contains the shortest distance
from s to all vertices v ∈ V.
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Figure 6-11. Dijkstra’s Algorithm example

Dijkstra’s Algorithm conceptually operates in a greedy fashion by expanding a set
of vertices, S, for which the shortest path from a designated source vertex, s, to every
vertex v ∈ S is known, but only using paths that include vertices in S. Initially, S equals
the set {s}. To expand S, as shown in Figure 6-12, Dijkstra’s Algorithm finds the
vertex v ∈ V – S (i.e., the vertices outside the shaded region) whose distance to s is
smallest, and follows v’s edges to see whether a shorter path exists to some other
vertex. After processing v2, for example, the algorithm determines that the distance
from s to v3 containing only vertices in S is really 17 through the path <s, v2, v3>.
Once S equals V, the algorithm completes and the final result is depicted in
Figure 6-12.

Input/Output
The input is a directed, weighted graph G = (V, E) and a source vertex s ∈ V. Each
edge e = (u, v) has an associated non-negative weight in the graph.
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Figure 6-12. Dijkstra’s Algorithm expands the set S

Dijkstra’s Algorithm produces two computed arrays. The primary result is the
array dist[] of values representing the distance from source vertex s to each vertex
in the graph. The secondary result is the array pred[] that can be used to rediscover
the actual shortest paths from vertex s to each vertex in the graph.

The edge weights are non-negative (i.e., greater than or equal zero); if this assump‐
tion is not true, then dist[] may contain invalid results. Even worse, Dijkstra’s
Algorithm will loop forever if a cycle exists whose sum of all weights is less
than zero.

Solution
As Dijkstra’s Algorithm executes, dist[v] represents the maximum length of the
shortest path found from the source s to v using only vertices visited within the set
S. Also, for each v ∈ S, dist[v] is correct. Fortunately, Dijkstra’s Algorithm does
not need to create and maintain the set S. It initially constructs a set containing the
vertices in V, and then it removes vertices one at a time from the set to compute
proper dist[v] values; for convenience, we continue to refer to this ever-shrinking
set as V-S. Dijkstra’s Algorithm terminates when all vertices are either visited or are
shown to not be reachable from the source vertex s.

In the C++ solution shown in Example 6-3, a binary heap stores the vertices in the
set V-S as a priority queue because, in constant time, we can locate the vertex with
smallest priority (i.e., the vertex’s distance from s). Additionally, when a shorter path
from s to v is found, dist[v] is decreased, requiring the heap to be modified. Fortu‐
nately, the decreasePriority operation (in a binary heap, it is known as decreaseKey)
can be performed in O(log q) time in the worst case, where q is the number of verti‐
ces in the binary heap, which will always be less than or equal to the number of ver‐
tices, V.
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Example 6-3. Dijkstra’s Algorithm implementation

/** Given directed, weighted graph, compute shortest distance to
 * vertices and record predecessor links for all vertices. */
void singleSourceShortest (Graph const &g, int s,  /* in */
                           vector<int> &dist,      /* out */
                           vector<int> &pred) {    /* out */
  // initialize dist[] and pred[] arrays. Start with vertex s by
  // setting dist[] to 0. Priority Queue PQ contains all v in G.
  const int n = g.numVertices();
  pred.assign (n, −1);
  dist.assign (n, numeric_limits<int>::max());
  dist[s] = 0;
  BinaryHeap pq(n);
  for (int u = 0; u < n; u++) { pq.insert (u, dist[u]); }

  // find vertex in ever shrinking set, V-S, whose dist[] is smallest.
  // Recompute potential new paths to update all shortest paths
  while (!pq.isEmpty()) {
    int u = pq.smallest();

    // For neighbors of u, see if newLen (best path from s->u + weight
    // of edge u->v) is better than best path from s->v. If so, update
    // in dist[v] and readjust binary heap accordingly. Compute using
    // longs to avoid overflow error.
    for (VertexList::const_iterator ci = g.begin (u);
         ci != g.end (u); ++ci) {
      int v = ci->first;
      long newLen = dist[u];
      newLen += ci->second;
      if (newLen < dist[v]) {
        pq.decreaseKey (v, newLen);
        dist[v] = newLen;
        pred[v] = u;
      }
    }
  }
}

Arithmetic error may occur if the sum of the individual edge weights exceeds
numeric_limits<int>::max() (although individual values do not). To avoid this
situation, compute newLen using a long data type.

Analysis
In the implementation of Dijkstra’s Algorithm in Example 6-3, the for loop that
constructs the initial priority queue performs the insert operation V times, resulting
in performance O(V log V). In the remaining while loop, each edge is visited once,
and thus decreaseKey is called no more than E times, which contributes O(E log V)
time. Thus, the overall performance is O((V + E) log V).
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Dijkstra’s Algorithm for Dense Graphs
There is a version of Dijkstra’s Algorithm suitable for dense graphs represented
using an adjacency matrix. The C++ implementation found in Example 6-4 no
longer needs a priority queue and it is optimized to use a two dimensional array to
contain the adjacency matrix. The efficiency of this version is determined by con‐
sidering how fast the smallest dist[] value in V – S can be retrieved. The while
loop is executed V times, since S grows one vertex at a time. Finding the smallest
dist[u] in V – S inspects all V vertices. Note that each edge is inspected exactly
once in the inner loop within the while loop. Since E can never be larger than V2,
the total running time of this version is O (V2).

Dijkstra’s Algorithm for Dense Graphs Summary
Best, Average, Worst: O(V2 + E)

singleSourceShortest (G, s)
  foreach v in V do

    dist[v] = ∞ 
    pred[v] = -1
    visited[v] = false
  dist[s] = 0

  while some unvisited vertex v has dist[v] < ∞ do 

    u = find dist[u] that is smallest of unvisited vertices 
    if dist[u] = ∞ then return
    visited[u] = true

    foreach neighbor v of u do
      w = weight of edge (u, v)
      newLen = dist[u] + w

      if newLen < dist[v] then 
        dist[v] = newLen
        pred[v] = u
end

Initially all vertices are considered to be unreachable.

Stop if all unvisited vertices v have dist[v] = ∞.

Find the vertex that has the shortest distance to source.

If a shorter path is discovered from s to v, record new length.

Because of the adjacency matrix structure, this variation no longer needs a priority
queue; instead, at each iteration it selects the unvisited vertex with smallest dist[]
value. Figure 6-13 demonstrates the execution on a small graph.
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Example 6-4. Optimized Dijkstra’s Algorithm for dense graphs

/** Given int[][] of edge weights as adjacency matrix, compute shortest
 * distance to all vertices in graph (dist) and record predecessor
 * links for all vertices (pred) */
void singleSourceShortestDense (int n, int ** const weight, int s, /* in */
                               int *dist, int *pred) {            /* out */
  // initialize dist[] and pred[] arrays. Start with vertex s by setting
  // dist[] to 0. All vertices are unvisited.
  bool *visited = new bool[n];
  for (int v = 0; v < n; v++) {
    dist[v] = numeric_limits<int>::max();
    pred[v] = −1;
    visited[v] = false;
  }
  dist[s] = 0;

  // find shortest distance from s to unvisited vertices.  Recompute
  // potential new paths to update all shortest paths.
  while (true) {
    int u = −1;
    int sd = numeric_limits<int>::max();
    for (int i = 0; i < n; i++) {
      if (!visited[i] && dist[i] < sd) {
        sd = dist[i];
        u = i;
      }
    }
    if (u == −1) { break; } // exit if no new paths found

    // For neighbors of u, see if best path-length from s->u + weight of
    // edge u->v is better than best path from s->v. Compute using longs.
    visited[u] = true;
    for (int v = 0; v < n; v++) {
      int w = weight[u][v];
      if (v == u) continue;

      long newLen = dist[u];
      newLen += w;
      if (newLen < dist[v]) {
        dist[v] = newLen;
        pred[v] = u;
      }
    }
  }
  delete [] visited;
}
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Figure 6-13. Dijkstra’s Algorithm dense graph example

Variations
We may seek the most reliable path to send a message from one point to another
through a network where we know the probability that any leg of a transmission
delivers the message correctly. The probability of any path (i.e., a sequence of legs)
delivering a message correctly is the product of all the probabilities along the path.
Using the same technique that makes multiplication possible on a slide rule, we can
replace the probability on each edge with the negative value of the logarithm of the
probability. The shortest path in this new graph corresponds to the most reliable
path in the original graph.

Dijkstra’s Algorithm cannot be used when edge weights are negative. However,
Bellman–Ford can be used as long as there is no cycle whose edge weights sum to a
value less than zero. The concept of “shortest path” is meaningless when such a cycle
exists. Although the sample graph in Figure 6-14 contains a cycle involving vertices
{1,3,2}, the edge weights are positive, so Bellman–Ford will work.

A C++ implementation of Bellman-Ford is shown in Example 6-5.
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Bellman–Ford Summary
Best, Average, Worst: O(V*E)

singleSourceShortest (G, s)
  foreach v in V do

    dist[v] = ∞ 
    pred[v] = -1
  dist[s] = 0

  for i = 1 to n do
    foreach edge (u,v) in E do
      newLen = dist[u] + weight of edge (u,v)

      if newLen < dist[v] then 
        if i = n then report "Negative Cycle"
        dist[v] = newLen
        pred[v] = u
end

Initially all vertices are considered to be unreachable.

If a shorter path is discovered from s to v, record new length.

Figure 6-14. Bellman–Ford example
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Example 6-5. Bellman–Ford algorithm for single-source shortest path

/**
 * Given directed, weighted graph, compute shortest distance to vertices
 * in graph (dist) and record predecessor links for all vertices (pred) to
 * be able to re-create these paths. Graph weights can be negative so long
 * as there are no negative cycles.
 */
void singleSourceShortest (Graph const &graph, int s,              /* in */
                          vector<int> &dist, vector<int> &pred) { /* out */
  // initialize dist[] and pred[] arrays.
  const int n = graph.numVertices();
  pred.assign (n, −1);
  dist.assign (n, numeric_limits<int>::max());
  dist[s] = 0;

  // After n-1 times we can be guaranteed distances from s to all
  // vertices are properly computed to be shortest. So on the nth
  // pass, a change to any value guarantees there is a negative cycle.
  // Leave early if no changes are made.
  for (int i = 1; i <= n; i++) {
    bool failOnUpdate = (i == n);
    bool leaveEarly = true;

    // Process each vertex, u, and its respective edges to see if
    // some edge (u,v) realizes a shorter distance from s->v by going
    // through s->u->v. Use longs to prevent overflow.
    for (int u = 0; u < n; u++) {
      for (VertexList::const_iterator ci = graph.begin (u);
           ci != graph.end (u); ++ci) {
        int v = ci->first;
        long newLen = dist[u];
        newLen += ci->second;
        if (newLen < dist[v]) {
          if (failOnUpdate) { throw "Graph has negative cycle"; }
          dist[v] = newLen;
          pred[v] = u;
          leaveEarly = false;
        }
      }
    }
    if (leaveEarly) { break; }
  }
}

Intuitively Bellman–Ford operates by making n sweeps over a graph that check to
see if any edge (u, v) is able to improve on the computation for dist[v] given
dist[u] and the weight of the edge over (u, v). At least n − 1 sweeps are needed, for
example, in the extreme case that the shortest path from s to some vertex v goes
through all vertices in the graph. Another reason to use n − 1 sweeps is that the
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edges can be visited in an arbitrary order, and this ensures all reduced paths have
been found.

Bellman–Ford is thwarted only when there exists a negative cycle of directed edges
whose total sum is less than zero. To detect such a negative cycle, we execute the
primary processing loop n times (one more than necessary), and if there is an
adjustment to some dist[] value, a negative cycle exists. The performance of Bell‐
man–Ford is O(V*E), as clearly seen by the nested for loops.

Comparing Single-Source Shortest-Path Options
The following summarizes the expected performance of the three algorithms by
computing a rough cost estimate:

• Bellman–Ford: O(V*E)

• Dijkstra’s Algorithm for dense graphs: O(V2 + E)
• Dijkstra’s Algorithm with priority queue: O((V + E)*log V)

We compare these algorithms under different scenarios. Naturally, to select the one
that best fits your data, you should benchmark the implementations as we have
done. In the following tables, we execute the algorithms 10 times and discard
the best- and worst-performing runs; the tables show the average of the remaining
eight runs.

Benchmark Data
It is difficult to generate random graphs. In Table 6-1, we show the performance on
generated graphs with |V| = k2 + 2 vertices and |E| = k3–k2 + 2k edges in a highly
stylized graph construction (for details, see the code implementation in the reposi‐
tory). Note that the number of edges is roughly n1.5 where n is the number of verti‐
ces in V. The best performance comes from using the priority queue
implementation of Dijsktra’s Algorithm but Bellman–Ford is not far behind. Note
how the variations optimized for dense graphs perform poorly.

Table 6-1. Time (in seconds) to compute single-source shortest path on
benchmark graphs

V E Dijkstra’s Algorithm
with PQ

Optimized Dijkstra’s
Algorithm for DG

Bellman–Ford

6 8 0.000002 0.000002 0.000001

18 56 0.000004 0.000003 0.000001

66 464 0.000012 0.000018 0.000005

258 3,872 0.00006 0.000195 0.000041

1,026 31,808 0.000338 0.0030 0.000287
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V E Dijkstra’s Algorithm
with PQ

Optimized Dijkstra’s
Algorithm for DG

Bellman–Ford

4,098 258,176 0.0043 0.0484 0.0076

16,386 2,081,024 0.0300 0.7738 0.0535

Dense Graphs
For dense graphs, E is on the order of O(V2); for example, in a complete graph of n
= |V| vertices that contains an edge for every pair of vertices, there are n*(n − 1)/2
edges. Using Bellman–Ford on such dense graphs is not recommended, since its
performance degenerates to O(V3). The set of dense graphs reported in Table 6-2 is
taken from a set of publicly available data sets used by researchers investigating the
Traveling Salesman Problem (TSP). We executed 100 trials and discarded the best
and worst performances; the table contains the average of the remaining 98 trials.
Although there is little difference between the priority queue and dense versions of
Dijsktra’s Algorithm, there is a vast improvement in the optimized Dijsktra’s
Algorithm, as shown in the table. In the final column we show the performance
time for Bellman–Ford for the same problems, but these results are the averages of
only five executions because the performance degrades so sharply. The lesson to
draw from the last column is that the absolute performance of Bellman–Ford on
sparse graphs seems to be quite reasonable, but when compared relatively to its
peers on dense graphs, we see clearly that it is the wrong algorithm to use (unless
there are edges with negative weights, in which case this algorithm must be used).

Table 6-2. Time (in seconds) to compute single-source shortest path on dense
graphs

V E Dijkstra’s Algorithm
with PQ

Optimized Dijkstra’s
Algorithm for DG

Bellman–Ford

980 479,710 0.0681 0.0050 0.1730

1,621 1,313,010 0.2087 0.0146 0.5090

6,117 18,705,786 3.9399 0.2056 39.6780

7,663 29,356,953 7.6723 0.3295 40.5585

9,847 48,476,781 13.1831 0.5381 78.4154

9,882 48,822,021 13.3724 0.5413 42.1146

Sparse graphs
Large graphs are frequently sparse, and the results in Table 6-3 confirm that one
should use the Dijsktra’s Algorithm with a priority queue rather than the imple‐
mentation crafted for dense graphs; note how the implementation for dense graphs
is noticeably slower. The rows in the table are sorted by the number of edges in the
sparse graphs, since that appears to be the determining cost factor in the results.
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Table 6-3. Time (in seconds) to compute single-source shortest path on large
sparse graphs

V E Density Dijkstra’s Algorithm
with PQ

Optimized Dijkstra’s
Algorithm for DG

3,403 137,845 2.4% 0.0102 0.0333

3,243 294,276 5.6% 0.0226 0.0305

19,780 674,195 0.34% 0.0515 1.1329

All-Pairs Shortest Path
Instead of finding the shortest path from a single source, we often seek the shortest
path between any two vertices (vi, vj); there may be several paths with the same total
distance. The fastest solution to this problem uses the Dynamic Programming tech‐
nique introduced in Chapter 3.

There are two interesting features of dynamic programming:

• It stores the solution to small, constrained versions of the problem.
• Although we seek an optimal answer to a problem, it is easier to compute the

value of an optimal answer rather than the answer itself. In our case, we com‐
pute, for each pair of vertices (vi, vj), the length of a shortest path from vi to vj
and perform additional computation to recover the actual path. In the follow‐
ing pseudocode, k, u, and v each represent a potential vertex of G.

Floyd–Warshall computes an n-by-n matrix dist such that for all pairs of vertices
(vi, vj), dist[i][j] contains the length of a shortest path from vi to vj.

Figure 6-15 demonstrates an example of Floyd-Warshall on the sample graph from
Figure 6-13. As you can confirm, the first row of the computed matrix is the same as
the computed vector from Figure 6-13. Floyd-Warshall computes the shortest path
between all pairs of vertices.

Input/Output
The input is a directed, weighted graph G = (V, E). Each edge e = (u, v) has an asso‐
ciated positive (i.e., greater than zero) weight in the graph.

Floyd–Warshall computes a matrix dist[][] representing the shortest distance
from each vertex u to every vertex in the graph (including itself). Note that if
dist[u][v] is ∞, then there is no path from u to v. The actual shortest path between
any two vertices can be computed from a second matrix, pred[][], also computed
by the algorithm.
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Figure 6-15. Floyd–Warshall example
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Floyd–Warshall Summary
Best, Average, Worst: O(V3)

allPairsShortestPath (G)
  foreach u in V do
    foreach v in V do

      dist[u][v] = ∞ 
      pred[u][v] = -1
    dist[u][u] = 0
    foreach neighbor v of u do
      dist[u][v] = weight of edge (u,v)
      pred[u][v] = u

  foreach k in V do
    foreach u in V do
      foreach v in V do
        newLen = dist[u][k] + dist[k][v]

        if newLen < dist[u][v] then 
          dist[u][v] = newLen

          pred[u][v] = pred[k][v] 
end

Initially all vertices are considered to be unreachable.

If a shorter path is discovered from s to v record new length.

Record the new predecessor link.

Solution
A Dynamic Programming approach computes, in order, the results of simpler sub‐
problems. Consider the edges of G: these represent the length of the shortest path
between any two vertices u and v that does not include any other vertex. Thus, the
dist[u][v] matrix is set initially to ∞ and dist[u][u] is set to zero (to confirm that
there is no cost for the path from a vertex u to itself). Finally, dist[u][v] is set to
the weight of every edge (u, v) ∈ E. At this point, the dist matrix contains the best
computed shortest path (so far) for each pair of vertices, (u, v).

Now consider the next larger subproblem, namely, computing the length of the
shortest path between any two vertices u and v that might also include v1. Dynamic
Programming will check each pair of vertices (u, v) to check whether the path
{u, v1, v} has a total distance smaller than the best score. In some cases, dist[u][v]
is still ∞ because there was no information on any path between u and v. At other
times, the sum of the paths from u to v1 and then from v1 to v is better than the
current distance, and the algorithm records that total in dist[u][v]. The next
larger subproblem tries to compute the length of the shortest path between any two
vertices u and v that might also include v1 or v2. Eventually the algorithm increases
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these subproblems until the result is a dist[u][v] matrix that contains the shortest
path between any two vertices u and v that might also include any vertex in the
graph.

Floyd–Warshall computes the key optimization check whether dist[u][k] +
dist[k][v] < dist[u][v]. Note that the algorithm also computes a pred[u][v]
matrix that “remembers” that the newly computed shorted path from u to v must go
through vertex k. The surprisingly brief solution is shown in Example 6-6.

Example 6-6. Floyd–Warshall algorithm for computing all-pairs shortest path

void allPairsShortest (Graph const &graph,     /* in */
        vector< vector<int> > &dist,           /* out */
        vector< vector<int> > &pred) {         /* out */
  int n = graph.numVertices();

  // Initialize dist[][] with 0 on diagonals, INFINITY where no edge
  // exists, and the weight of edge (u,v) placed in dist[u][v]. pred
  // initialized in corresponding way.
  for (int u = 0; u < n; u++) {
    dist[u].assign (n, numeric_limits<int>::max());
    pred[u].assign (n, −1);
    dist[u][u] = 0;
    for (VertexList::const_iterator ci = graph.begin (u);
         ci != graph.end (u); ++ci) {
      int v = ci->first;
      dist[u][v] = ci->second;
      pred[u][v] = u;
    }
  }

  for (int k = 0; k < n; k++) {
    for (int i = 0; i < n; i++) {
      if (dist[i][k] == numeric_limits<int>::max()) { continue; }

      // If an edge is found to reduce distance, update dist[][].
      // Compute using longs to avoid overflow of Infinity distance.
      for (int j = 0; j < n; j++) {
        long newLen = dist[i][k];
        newLen += dist[k][j];

        if (newLen < dist[i][j]) {
          dist[i][j] = newLen;
          pred[i][j] = pred[k][j];
        }
      }
    }
  }
}
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The function shown in Example 6-7 constructs an actual shortest path (there may
be more than one) from a given s to t. It works by recovering predecessor informa‐
tion from the pred matrix.

Example 6-7. Code to recover shortest path from computed pred[][]

/** Output path as list of vertices from s to t given the pred results
 * from an allPairsShortest execution. Note that s and t must be valid
 * integer vertex identifiers. If no path is found between s and t, then
 * an empty path is returned.  */
void constructShortestPath (int s, int t,    /* in */
        vector< vector<int> > const &pred,   /* in */
        list<int> &path) {                   /* out */
  path.clear();
  if (t < 0 || t >= (int) pred.size() || s < 0 || s >= (int) pred.size()) {
    return;
  }

  // construct path until we hit source 's' or −1 if there is no path.
  path.push_front (t);
  while (t != s) {
    t = pred[s][t];
    if (t == −1) { path.clear (); return; }

    path.push_front (t);
  }
}

Analysis
The time taken by Floyd–Warshall is dictated by the number of times the minimi‐
zation function is computed, which is O(V3), as can be seen from the three nested
for loops. The constructShortestPath function in Example 6-7 executes in O(E)
since the shortest path might include every edge in the graph.

Minimum Spanning Tree Algorithms
Given an undirected, connected graph G = (V, E), we might be concerned with find‐
ing a subset ST of edges from E that “span” the graph because it connects all vertices.
If we further require that the total weight of the edges in ST is the minimal across
all possible spanning trees, then we are interested in finding a minimum spanning
tree (MST).

Prim’s Algorithm shows how to construct an MST from such a graph by using a
Greedy approach in which each step of the algorithm makes forward progress
toward a solution without reversing earlier decisions. Prim’s Algorithm grows a
spanning tree T one edge at a time until an MST results (and the resulting spanning
tree is provably minimum). It randomly selects a start vertex s ∈ v to belong to a
growing set S and ensures that T forms a tree of edges in S. Prim’s Algorithm is
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greedy in that it incrementally adds edges to T until an MST is computed. The intu‐
ition behind the algorithm is that the edge (u, v) with lowest weight between u ∈ S
and v ∈ V-S must belong to the MST. When such an edge (u, v) with lowest weight is
found, it is added to T and the vertex v is added to S.

The algorithm uses a priority queue to store the vertices v ∈ V – S with an associated
priority key equal to the lowest weight of some edge (u, v) where u ∈ S. This key
value reflects the priority of the element within the priority queue; smaller values
are of higher importance.

Prim’s Algorithm Summary
Best, Average, Worst: O((V + E)*log V)

computeMST (G)
  foreach v in V do

    key[v] = ∞ 
    pred[v] = -1
  key[0] = 0
  PQ = empty Priority Queue
  foreach v in V do
    insert (v, key[v]) into PQ

  while PQ is not empty do

    u = getMin(PQ) 
    foreach edge(u,v) in E do
      if PQ contains v then
        w = weight of edge (u,v)

        if w < key[v] then 
          pred[v] = u
          key[v] = w
          decreasePriority (PQ, v, w)
end

Initially all vertices are considered to be unreachable.

Find vertex in V with lowest computed distance.

Revise cost estimates for v and record MST edge in pred[v].

Figure 6-16 demonstrates the behavior of Prim’s Algorithm on a small undirected
graph. The priority queue is ordered based on the distance from the vertices in the
queue to any vertex already contained in the MST.

Input/Output
The input is an undirected graph G = (V, E).

The output is an MST encoded in the pred[] array. The root of the MST is the ver‐
tex whose pred[v] = –1.
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Figure 6-16. Prim’s Algorithm example

Solution
The C++ solution shown in Example 6-8 relies on a binary heap to provide the
implementation of the priority queue that is central to Prim’s Algorithm. Ordinar‐
ily, using a binary heap would be inefficient because of the check in the main loop
for whether a particular vertex is a member of the priority queue (an operation not
supported by binary heaps). However, the algorithm ensures each vertex is removed
from the priority queue only after being processed by the program, thus it main‐
tains a status array inQueue[] that is updated whenever a vertex is extracted from
the priority queue. In another implementation optimization, it maintains an exter‐
nal array key[] recording the current priority key for each vertex in the queue,
which again eliminates the need to search the priority queue for a given vertex.
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Prim’s Algorithm randomly selects one of the vertices to be the starting vertex, s.
When the minimum vertex, u, is removed from the priority queue PQ and “added”
to the visited set S, the algorithm uses existing edges between S and the growing
spanning tree T to reorder the elements in PQ. Recall that the decreasePriority oper‐
ation moves an element closer to the front of PQ.

Example 6-8. Prim’s Algorithm implementation with binary heap

/** Given undirected graph, compute MST starting from a randomly
 * selected vertex. Encoding of MST is done using 'pred' entries. */
void mst_prim (Graph const &graph, vector<int> &pred) {
  // initialize pred[] and key[] arrays. Start with arbitrary
  // vertex s=0. Priority Queue PQ contains all v in G.
  const int n = graph.numVertices();
  pred.assign (n, −1);
  vector<int> key(n, numeric_limits<int>::max());
  key[0] = 0;
  BinaryHeap pq(n);
  vector<bool> inQueue(n, true);
  for (int v = 0; v < n; v++) {
    pq.insert (v, key[v]);
  }

  while (!pq.isEmpty()) {
    int u = pq.smallest();
    inQueue[u] = false;

    // Process all neighbors of u to find if any edge beats best distance
    for (VertexList::const_iterator ci = graph.begin (u);
         ci != graph.end (u); ++ci) {
      int v = ci->first;
      if (inQueue[v]) {
        int w = ci->second;
        if (w < key[v]) {
          pred[v] = u;
          key[v] = w;
          pq.decreaseKey (v, w);
        }
      }
    }
  }
}

Analysis
The initialization phase of Prim’s Algorithm inserts each vertex into the priority
queue (implemented by a binary heap) for a total cost of O(V log V). The decrease
Key operation in Prim’s Algorithm requires O(log q) performance, where q is the
number of elements in the queue, which will always be less than V. It can be called
at most 2*E times since each vertex is removed once from the priority queue and
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each undirected edge in the graph is visited exactly twice. Thus, the total perfor‐
mance is O((V + 2*E)*log V) or O((V + E)*log V).

Variations
Kruskal’s Algorithm is an alternative to Prim’s Algorithm. It uses a “disjoint-set”
data structure to build up the minimum spanning tree by processing all edges in the
graph in order of weight, starting with the edge with the smallest weight and ending
with the edge with the largest weight. Kruskal’s Algorithm can be implemented in
O(E log V). Details on this algorithm can be found in (Cormen et al., 2009).

Final Thoughts on Graphs
In this chapter, we have seen that the algorithms behave differently based on
whether a graph is sparse or dense. We will now explore this concept further to ana‐
lyze the break-even point between sparse and dense graphs and understand the
impact on storage requirements.

Storage Issues
When using a two-dimensional adjacency matrix to represent potential relation‐
ships among n elements in a set, the matrix requires n2 elements of storage, yet there
are times when the number of relationships is much smaller. In these cases—known
as sparse graphs—it may be impossible to store large graphs with more than several
thousand vertices because of the limitations of computer memory. Additionally, tra‐
versing through large matrices to locate the few edges in sparse graphs becomes
costly, and this storage representation prevents efficient algorithms from achieving
their true potential.

The adjacency representations discussed in this chapter contain the same informa‐
tion. Suppose, however, you were writing a program to compute the cheapest flights
between any pair of cities in the world that are served by commercial flights. The
weight of an edge would correspond to the cost of the cheapest direct flight between
that pair of cities (assuming airlines do not provide incentives by bundling flights).
In 2012, Airports Council International (ACI) reported a total of 1,598 airports
worldwide in 159 countries, resulting in a two-dimensional matrix with 2,553,604
entries. The question “how many of these entries has a value?” is dependent on the
number of direct flights. ACI reported 79 million “aircraft movements” in 2012,
roughly translating to a daily average of 215,887 flights. Even if all of these flights
represented an actual direct flight between two unique airports (clearly the number
of direct flights will be much smaller), this means the matrix is 92% empty—a good
example of a sparse matrix!

Graph Analysis
When applying the algorithms in this chapter, the essential factor that determines
whether to use an adjacency list or adjacency matrix is whether the graph is sparse.
We compute the performance of each algorithm in terms of the number of vertices
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in the graph, V, and the number of edges in the graph, E. As is common in the liter‐
ature on algorithms, we simplify the presentation of the formulas that represent
best, average, and worst case by using V and E within the big-O notation. Thus,
O(V) means a computation requires a number of steps that is directly proportional
to the number of vertices in the graph. However, the density of the edges in the
graph will also be relevant. Thus, O(E) for a sparse graph is on the order of O(V),
whereas for a dense graph it is closer to O(V2).

As we will see, the performance of some algorithms depends on the structure of the
graph; one variation might execute in O((V + E)*log V) time, while another executes
in O(V2 + E) time. Which one is more efficient? Table 6-4 shows that the answer
depends on whether the graph G is sparse or dense. For sparse graphs, O((V +
E)*log V) is more efficient, whereas for dense graphs O(V2 + E) is more efficient.
The table entry labeled “Break-even graph” identifies the type of graphs for which
the expected performance is the same O(V2) for both sparse and dense graphs; in
these graphs, the number of edges is on the order of O(V2/log v).

Table 6-4. Performance comparison of two algorithm variations

Graph type O((V + E)*logV) Comparison O(V2 + E)

Sparse graph:
|E| is O(V)

O(V log V) is smaller than O(V2)

Break-even graph:

|E| is O(V2/log V)
O(V2 + V log v) = O(V2) is equivalent to O(V2 + V2/log V) = O(V2)

Dense graph:

|E| is O(V2)
O(V2 log V) is larger than O(V2)

References
Cormen, T. H., C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms.
Third Edition. MIT Press, 2009.
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7
Path Finding in AI

To solve a problem when there is no clear computation for a valid solution, we turn
to path finding. This chapter covers two related path-finding approaches: one using
game trees for two-player games and the other using search trees for single-player
games. These approaches rely on a common structure, namely a state tree whose
root node represents the initial state and edges represent potential moves that trans‐
form the state into a new state. The searches are challenging because the underlying
structure is not computed in its entirety due to the explosion of the number of
states. In a game of checkers, for example, there are roughly 5*1020 different board
configurations (Schaeffer, 2007). Thus, the trees over which the search proceeds are
constructed on demand as needed. The two path-finding approaches are character‐
ized as follows:

Game tree
Two players take turns alternating moves that modify the game state from its
initial state. There are many states in which either player can win the game.
There may also be some “draw” states in which no one wins. A path-finding
algorithm maximizes the chance that a player will win or force a draw.

Search tree
A single player starts from an initial board state and makes valid moves until
the desired goal state is reached. A path-finding algorithm identifies the exact
sequence of moves that will transform the initial state into the goal state.

Game Trees
The game of tic-tac-toe is played on a 3×3 board where players take turns placing X
and O marks on the board. The first player to place three of his marks in a row
wins; the game is a draw if no spaces remain and no player has won. In tic-tac-toe
there are only 765 unique positions (ignoring reflections and rotations of the board
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state) and a calculated 26,830 possible games that can be played (Schaeffer, 2002). To
see some of the potential games, construct a game tree, as shown partially in
Figure 7-1, and find a path from player O’s current game state (represented as the
top node in this tree) to some future game state that ensures either a victory or a
draw for player O.

Figure 7-1. Partial game tree given an initial tic-tac-toe game state

A game tree is also known as an AND/OR tree since it is formed by two different
types of nodes. The top node is an OR node, because the goal is for player O to
select just one of the six available moves in the middle tier. The middle-tier nodes
are AND nodes, because the goal (from O’s perspective) is to ensure all counter‐
moves by X (shown as children nodes in the bottom tier) will still lead to either a
victory or a draw for O. The game tree in Figure 7-1 is only partially expanded
because there are actually 30 different game states in the bottom tier.

In a sophisticated game, the game tree may never be computed fully because of its
size. The goal of a path-finding algorithm is to determine from a game state the
player’s move that maximizes (or even guarantees) his chance of winning the game.
We thus transform an intelligent set of player decisions into a path-finding problem
over the game tree. This approach works for games with small game trees, but it can
also scale to solve more complex problems.

The American game of checkers is played on an 8×8 board with an initial set of 24
pieces (12 red and 12 black). For decades, researchers attempted to determine
whether the opening player could force a draw or a win. Although it is difficult to
compute exactly, the size of the game tree must be incredibly large. After nearly 18
years of computations (sometimes on as many as 200 computers), researchers at the
University of Alberta, Canada, demonstrated that perfect play by both players leads
to a draw (Schaeffer, 2007).

Path finding in artificial intelligence (AI) provides specific algorithms to tackle
incredibly complex problems if they can be translated into a combinatorial game of
alternating players. Early researchers in AI (Shannon, 1950) considered the chal‐
lenge of building a chess-playing machine and developed two types of approaches
for search problems that continue to define the state of the practice today:
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Type A
Consider the various allowed moves for both players a fixed set of turns into
the future, and determine the most favorable position that results for the origi‐
nal player. Then, select the initial move that makes progress in that direction.

Type B
Add some adaptive decision based on knowledge of the game rather than static
evaluation functions. More explicitly, (a) evaluate promising positions as far
ahead as necessary to find a stable position where the board evaluation truly
reflects the strength of the resulting position, and (b) select appropriate avail‐
able moves. This approach tries to prevent pointless possibilities from consum‐
ing precious time.

In this chapter, we describe the family of Type A algorithms that provides a general-
purpose approach for searching a game tree to find the best move for a player in a
two-player game. These algorithms include Minimax, AlphaBeta, and NegMax.

The algorithms discussed in this chapter become unnecessarily complicated if the
underlying information is poorly modeled. Many of the examples in textbooks or
on the Internet naturally describe these algorithms in the context of a particular
game. However, it may be difficult to separate the arbitrary way in which the game
is represented from the essential elements of these algorithms. For this reason, we
intentionally designed a set of object-oriented interfaces to maintain a clean separa‐
tion between the algorithms and the games. We’ll now briefly summarize the core
interfaces in our implementation of game trees, which are illustrated in Figure 7-2.

The IGameState interface abstracts the essential concepts needed to conduct
searches over a game state. It defines how to:

Interpret the game state
isDraw() determines whether the game concludes with neither player winning;
isWin() determines whether the game is won.

Manage the game state
copy() returns an identical copy of the game state so moves can be applied
without updating the original game state; equivalent(IGameState) deter‐
mines whether two game state positions are equal.

Figure 7-2. Core interfaces for game-tree algorithms
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The IPlayer interface abstracts the abilities of a player to manipulate the game
state. It defines how to:

Evaluate a board
eval(IGameState) returns an integer evaluating the game state from the play‐
er’s perspective; score(IGameScore) sets the scoring computation the player
uses to evaluate a game state.

Generate valid moves
validMoves(IGameState) returns a collection of available moves given the
game state.

The IGameMove interface defines how moves manipulate the game state. The move
classes are problem-specific, and the search algorithm need not be aware of their
specific implementation. IGameScore defines the interface for scoring states.

From a programming perspective, the heart of the path-finding algorithm for
a game tree is an implementation of the IEvaluation interface shown in
Example 7-1.

Example 7-1. Common interface for game-tree path finding

/**
 * For game state, player and opponent, return the best move
 * for player. If no move is even available, null is returned.
 */
public interface IEvaluation {
  IGameMove bestMove(IGameState state, IPlayer player, IPlayer opponent);
}

Given a node representing the current game state, the algorithm computes the best
move for a player assuming the opponent will play a perfect game in return.

Static Evaluation Functions
There are several ways to add intelligence to the search (Barr and Feigenbaum,
1981):

Select the order and number of allowed moves to be applied
When considering available moves at a game state, we should first evaluate the
moves that are likely to lead to a successful outcome. In addition, we might dis‐
card specific moves that do not seem to lead to a successful outcome.

Select game states to “prune” from the search tree
As the search progresses, new knowledge may be discovered that can be used to
eliminate game states that had (at one time) been selected to be part of
the search.

The most common approach is to define static evaluation functions to evaluate the
game state at intermediate points in the computation, and then order the set of
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available moves so that moves with a higher probability of leading to a solution are
tried first. However, poor evaluation functions can prevent path-finding algorithms
from selecting the best moves to make. As the saying goes, “garbage in, garbage out.”

A static evaluation function must take into account various features of the game-
tree position to return an integer score that reflects the relative strength of the posi‐
tion from a player’s perspective. For example, the first successful program to play
checkers, developed by Arthur Samuel (1959), evaluated board positions by consid‐
ering two dozen features of a game, such as the “piece advantage feature” (compar‐
ing the number of pieces a player has versus her opponent) and a “winning trade
feature” (trading pieces when winning but not when losing). Clearly, a more accu‐
rate evaluation function makes the game-solving engine a better player.

In this chapter, we use the BoardEvaluation scoring function for tic-tac-toe, which
was defined by Nil Nilsson (1971). Let nc(gs, p) be the number of rows, columns, or
diagonals on a tic-tac-toe game state, gs, in which player p may still get three in a
row. We then define score(gs, p) to be:

• +∞ if player p has won the game in game state gs
• −∞ if the opponent of player p has won the game in game state gs
• nc(gs, p) – nc(gs, opponent) if neither player has won the game in game state gs

Instead of restricting the evaluation to the current game state, an evaluation func‐
tion could temporarily expand that state a fixed number of moves and select the
move that may ultimately lead to a game state with maximum benefit to the player.
This is frowned upon in practice because of (a) the cost in performing the opera‐
tions, and (b) the sharing of code logic between the evaluation function and the
search function, which breaks the clean separation between them.

Path-Finding Concepts
The following concepts apply to both two-player game trees and single-player
search trees.

Representing State
Each node in a game or search tree contains all state information known at that
position in the game. For example, in chess, the king can “castle” with the rook only
if (a) neither piece has yet moved, (b) the intervening squares are empty and not
currently attacked by an enemy piece, and (c) the king is not currently in check.
Note that (b) and (c) can be computed directly from the board state and therefore
do not need to be stored; however, the board state must separately store whether the
king or rooks have moved.

For games with exponentially large trees, the state must be stored as compactly as
possible. If symmetries exist in the state, such as with Connect Four, Othello, or the
15-puzzle, the tree can be greatly reduced by eliminating identical states that may
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simply be rotated or reflected. More complex representations called bitboards have
been used for chess, checkers, or Othello to manage the incredibly large number of
states with impressive efficiency gains (Pepicelli, 2005).

Calculating Available Moves
To find the best move, it must be possible at each state to compute the available
moves allowed to the player making the move. The term branching factor refers to
the total number of moves that are allowed at any individual state. The original 3×3
Rubik’s Cube has (on average) a branching factor of 13.5 (Korf, 1985). The popular
children’s game Connect Four has a branching factor of 7 for most of the game.
Checkers is more complicated because of the rule that a player must capture a piece
if that move is available. Based on analyzing a large number of checkers databases,
the branching factor for capture positions is 1.20, whereas for noncapture positions
it is 7.94; Schaeffer (2008) computes the average branching factor in Checkers to be
6.14. The game of Go has an initial branching factor of 361 because it is played on a
19×19 board.

Algorithms are sensitive to the order by which the available moves are attempted.
When the branching factor for a game is high but the moves are not properly
ordered based on some evaluative measure of success, blindly searching a tree is
inefficient.

Maximum Expansion Depth
Because of limited memory resources, some search algorithms limit the extent to
which they expand the search and game trees. This approach has its weaknesses in
games where a sequence of moves forms a calculated strategy. In chess, for example,
a piece is often sacrificed for a potential advantage; if the sacrifice occurs at the edge
of the maximum expansion, the advantageous game state would not be found. A
fixed expansion depth leaves a “horizon” beyond which the search cannot see, often
to the detriment of the success of the search. For single-player games, fixing the
maximum depth means the algorithm will not find the solution that lies just beyond
the horizon.

Minimax
Given a specific position in a game tree from the perspective of an initial player, a
search program must find a move that leads to the greatest chance of victory (or at
least a draw). Instead of considering only the current game state and the available
moves at that state, the program must consider any countermoves that its opponent
will make after it makes each move. The program assumes there is an evaluation
function score(state, player) that returns an integer representing the score of the
game state from player’s perspective; lower integer numbers (which may be nega‐
tive) reflect weaker positions.

The game tree is expanded by considering future game states after a sequence of n
moves have been made. Each level of the tree alternates between MAX levels (where
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the goal is to benefit the original player by maximizing the evaluated score of a
game state) and MIN levels (where the goal is to benefit the opponent by minimiz‐
ing the evaluated score of a game state). At alternating levels, then, the program
selects a move that maximizes score(state, initial), but when the opponent is
making its move, the program assumes the opponent will select a move that mini‐
mizes score(state, initial).

Of course, the program can look ahead only a finite number of moves because the
game tree is potentially infinite. The number of moves chosen to look ahead is
called the ply. The trade-off is to select a suitable ply that leads to a search explora‐
tion that completes in reasonable time.

The following pseudocode illustrates the Minimax algorithm.

Minimax Summary
Best, Average, Worst: O(bply)

bestmove (s, player, opponent)

  original = player 
  [move, score] = minimax (s, ply, player, opponent)
  return move
end

minimax (s, ply, player, opponent)
  best = [null, null]

  if ply is 0 or there are no valid moves then 
    score = evaluate s for original player
    return [null, score]

  foreach valid move m for player in state s do
    execute move m on s

    [move, score] = minimax(s, ply-1, opponent, player) 
    undo move m on s

    if player is original then 
      if score > best.score then best = [m, score]
    else
      if score < best.score then best = [m, score]
  return best
end

Remember original player since evaluation is always from that player’s perspec‐
tive.

If no more moves remain, player might have won (or lost), which is equivalent
to reaching target ply depth.

With each recursive call, swap player and opponent to reflect alternating turns.

Successive levels alternate between MAX or MIN.
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Figure 7-3 shows an evaluation of a move using Minimax with ply depth of 3. The
bottom row of the game tree contains the five possible game states that result after
the player makes a move, the opponent responds, and then the player makes a
move. Each of these game states is evaluated from the point of view of the original
player, and the integer rating is shown in each node. The MAX second row from the
bottom contains internal nodes whose scores are the maximum of their respective
children. From the point of view of the original player, these represent the best
scores he can attain. However, the MIN third row from the bottom represents the
worst positions the opponent can force on the player, thus its scores are the mini‐
mum of its children. As you can see, each level alternates between selecting the
maximum and minimum of its children. The final score demonstrates that the orig‐
inal player can force the opponent into a game state that evaluates to 3.

Figure 7-3. Minimax sample game tree

Input/Output
Minimax looks ahead a fixed number of moves, which is called the ply depth.

Minimax returns a move from among the valid moves that leads to the best future
game state for a specific player, as determined by the evaluation function.

Context
Evaluating the game state is complex, and we must resort to heuristic evaluations to
determine the better game state. Indeed, developing effective evaluation functions
for games such as chess, checkers, or Othello is the greatest challenge in designing
intelligent programs. We assume these evaluation functions are available.

The size of the game tree is determined by the number of available moves, b, at each
game state. For most games, we can only estimate the value of b. For tic-tac-toe (and
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other games such as Nine Men’s Morris) there are b available moves in the initial
empty game state, and each move takes away a potential move from the opponent. If
the ply depth is d, the number of game states checked for tic-tac-toe is

∑
i = 1

d b!
b − i !

where b! is the factorial of b. To give an example of the scale involved, Minimax
evaluates 187,300 states when b = 10 and d = 6.

During the recursive invocation within Minimax, the score(state, player) evalua‐
tion function must be consistently applied using the original player for whom a
move is being calculated. This coordinates the minimum and maximum recursive
evaluations.

Solution
The helper class MoveEvaluation pairs together an IMove and an int evaluation to
be associated with that move. Minimax explores to a fixed ply depth, or when a
game state has no valid moves for a player. The Java code in Example 7-2 returns the
best move for a player in a given game state.

Example 7-2. Minimax implementation

public class MinimaxEvaluation implements IEvaluation {
  IGameState state;    /** State to be modified during search. */
  int ply;             /** Ply depth. How far to continue search. */
  IPlayer original;    /** Evaluate all states from this perspective. */

  public MinimaxEvaluation (int ply) {
    this.ply = ply;
  }

  public IGameMove bestMove (IGameState s,
                             IPlayer player, IPlayer opponent) {
    this.original = player;
    this.state = s.copy();

    MoveEvaluation me = minimax(ply, IComparator.MAX,
                                player, opponent);
    return me.move;
  }

  MoveEvaluation minimax (int ply, IComparator comp,
                          IPlayer player, IPlayer opponent) {

    // If no allowed moves or a leaf node, return game state score.
    Iterator<IGameMove> it = player.validMoves (state).iterator();
    if (ply == 0 || !it.hasNext()) {
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      return new MoveEvaluation (original.eval (state));
    }

    // Try to improve on this lower bound (based on selector).
    MoveEvaluation best = new MoveEvaluation (comp.initialValue());

    // Generate game states resulting from valid moves for player
    while (it.hasNext()) {
      IGameMove move = it.next();
      move.execute(state);

      // Recursively evaluate position. Compute Minimax and swap
      // player and opponent, synchronously with MIN and MAX.
      MoveEvaluation me = minimax (ply-1, comp.opposite(),
                                   opponent, player);
      move.undo(state);

      // Select maximum (minimum) of children if we are MAX (MIN)
      if (comp.compare (best.score, me.score) < 0) {
        best = new MoveEvaluation (move, me.score);
      }
    }
    return best;
  }
}

The MAX and MIN selectors evaluate scores to properly select the maximum or
minimum score as desired. This implementation is simplified by defining an
IComparator interface, shown in Figure 7-4, that defines MAX and MIN and con‐
solidates how they select the best move from their perspective. Switching between
the MAX and MIN selector is done using the opposite() method. The worst score
for each of these comparators is returned by initialValue().

Minimax can rapidly become overwhelmed by the sheer number of game states
generated during the recursive search. In chess, where the average number of moves
on a board is 30 (Laramée, 2000), looking ahead just five moves (i.e., b = 30,
d = 5) requires evaluating up to 25,137,931 board positions, as determined by the
expression:

∑
i = 0

d
bi

Minimax can take advantage of symmetries in the game state, such as rotations or
reflections of the board, by caching past states viewed (and their respective scores),
but the savings are game-specific.
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Figure 7-4. IComparator interface abstracts MAX and MIN operators

Figure 7-5 contains a two-ply exploration of an initial tic-tac-toe game state
for player O using Minimax. The alternating levels of MAX and MIN show how
the first move from the left—placing an O in the upper-left corner—is the only
move that averts an immediate loss. Note that all possible game states are expanded,
even when it becomes clear the opponent X can secure a win if O makes a poor
move choice.

Figure 7-5. Sample Minimax exploration

Analysis
When there is a fixed number b of moves at each game state (or even when the
number of available moves reduces by one with each level), the total number of
game states searched in a d-ply Minimax is O(bd), demonstrating exponential
growth. The ply-depth restriction can be eliminated if the game tree is small enough
to be completely evaluated in an acceptable amount of time.
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Given the results of Figure 7-5, is there some way to eliminate exploring useless
game states? Because we assume the player and opponent make no mistakes, we
need to find a way to stop expanding the game tree once the algorithm determines
that an entire subtree is worthless to explore further. AlphaBeta properly imple‐
ments this capability; we first explain how to simplify the alternating MAX and MIN
levels of the game tree with the NegMax algorithm.

NegMax
NegMax replaces the alternative MAX and MIN levels of Minimax with a single
approach used at each level of the game tree. It also forms the basis of the Alpha‐
Beta algorithm presented next.

In Minimax, the game state is always evaluated from the perspective of the player
making the initial move (which requires the evaluation function to store this infor‐
mation). The game tree is thus composed of alternating levels that maximize the
score of children nodes (when the original player) or minimize the score of children
nodes (when the opponent). Instead, NegMax consistently seeks the move that pro‐
duces the maximum of the negative values of a state’s children nodes.

NegMax Summary
Best, Average, Worst: O(bply)

bestmove (s, player, opponent)
  [move, score] = negmax (s, ply, player, opponent)
  return move
end

negmax (s, ply, player, opponent)
  best = [null, null]
  if ply is 0 or there are no valid moves then
    score = evaluate s for player
    return [null, score]

  foreach valid move m for player in state s do
    execute move m on s

    [move, score] = negmax (s, ply-1, opponent, player) 
    undo move m on s

    if -score > best.score then best = [m, -score] 
  return best
end

NegMax swaps players with each successive level.

Choose largest of the negative scores of its children.

Intuitively, after a player has made its move, the opponent will try to make its best
move; thus, to find the best move for a player, select the one that restricts the oppo‐
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nent from scoring too highly. If you compare the pseudocode examples, you will see
that Minimax and NegMax produce two game trees with identical structure; the
only difference is how the game states are scored.

The structure of the NegMax game tree is identical to the Minimax game tree
because it finds the exact same move; the only difference is that the values in levels
previously labeled as MIN are negated in NegMax. If you compare the tree in
Figure 7-6 with Figure 7-3, you see this behavior.

Figure 7-6. NegMax sample game tree

Solution
In Example 7-3, note that the score for each MoveEvaluation is simply the evalua‐
tion of the game state from the perspective of the player making that move. Reor‐
ienting each evaluation toward the player making the move simplifies the algorithm
implementation.

Example 7-3. NegMax implementation

public class NegMaxEvaluation implements IEvaluation {
  IGameState state;        /** State to be modified during search. */
  int ply;                 /** Ply depth. How far to continue search. */
  public NegMaxEvaluation (int ply) {
    this.ply = ply;
  }

  public IGameMove bestMove (IGameState s, IPlayer player, IPlayer opponent)
  {
    state = s.copy();
    MoveEvaluation me = negmax (ply, player, opponent);
    return me.move;
  }
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  public MoveEvaluation negmax (int ply, IPlayer player, IPlayer opponent)
  {
    // If no allowed moves or a leaf node, return board state score.
    Iterator<IGameMove> it = player.validMoves (state).iterator();
    if (ply == 0 || !it.hasNext()) {
   return new MoveEvaluation (player.eval (state));
    }

    // Try to improve on this lower-bound move.
    MoveEvaluation best = new MoveEvaluation (MoveEvaluation.minimum());

    // get moves for this player and generate the boards that result from
    // these moves. Select maximum of the negative scores of children.
    while (it.hasNext()) {
      IGameMove move = it.next();
      move.execute (state);

      // Recursively evaluate position using consistent negmax.
      MoveEvaluation me = negmax (ply-1, opponent, player);
      move.undo (state);
      if (-me.score > best.score) {
        best = new MoveEvaluation (move, -me.score);
      }
    }
    return best;
  }
}

NegMax is useful because it prepares a simple foundation on which to extend to
AlphaBeta. Because board scores are routinely negated in this algorithm, we must
carefully choose values that represent winning and losing states. Specifically, the
minimum value must be the negated value of the maximum value. Note that
Integer.MIN_VALUE (defined in Java as 0x80000000 or −2,147,483,648) is not the
negated value of Integer.MAX_VALUE (in Java, defined as 0x7fffffff or
2,147,483,647). For this reason, we use Integer.MIN_VALUE+1 as the minimum
value, which is retrieved by the static function MoveEvaluation.minimum(). For
completeness, we provide MoveEvaluation.maximum() as well.

Figure 7-7 contains a two-ply exploration of an initial tic-tac-toe game state for
player O using NegMax. NegMax expands all possible game states, even when it
becomes clear the opponent X can secure a win if O makes a poor move. The scores
associated with each of the leaf game states are evaluated from that player’s perspec‐
tive (in this case, the original player O). The score for the initial game state is −2,
because that is the “maximum of the negative scores of its children.”

Analysis
The number of states explored by NegMax is the same as Minimax, on the order of
bd for a d-ply search with fixed number b of moves at each game state. In all other
respects, it performs identically to Minimax.
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Figure 7-7. Sample NegMax exploration

AlphaBeta
Minimax evaluates a player’s best move when considering the opponent’s counter‐
moves, but this information is not used while the game tree is generated! Consider
the BoardEvaluation scoring function introduced earlier. Recall Figure 7-5, which
shows the partial expansion of the game tree from an initial game state after X has
made two moves and O has made just one move.

Note how Minimax plods along even though each subsequent search reveals a los‐
ing board if X is able to complete the diagonal. A total of 36 nodes are evaluated.
Minimax takes no advantage of the fact that the original decision for O to play in
the upper-left corner prevented X from scoring an immediate victory. AlphaBeta
defines a consistent strategy to prune unproductive searches from the search tree.

After evaluating the sub game tree rooted at (1) in Figure 7-8, AlphaBeta knows
that if this move is made the opponent cannot force a worse position than -3, which
means the best the player can do is score a 3. When AlphaBeta gets to the game
state (2), the first child game state (3) evaluates to 2. This means that if the move for
(2) is selected, the opponent can force the player into a game state that is less than
the best move found so far (i.e., 3). There is no need to check the sibling subtree
rooted at (4), so it is pruned away.

Using AlphaBeta, the equivalent expansion of the game tree is shown in Figure 7-9.

As AlphaBeta searches for the best move in Figure 7-9, it remembers that X can
score no higher than 2 if O plays in the upper-left corner. For each subsequent other
move for O, AlphaBeta determines that X has at least one countermove that outper‐
forms the first move for O (indeed, in all cases X can win). Thus, the game tree
expands only 16 nodes, a savings of more than 50% from Minimax. AlphaBeta
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selects the same move that Minimax would have selected, with potentially signifi‐
cant performance savings.

Figure 7-8. AlphaBeta sample game tree

Figure 7-9. AlphaBeta two-ply search

AlphaBeta recursively searches through the game tree and maintains two values, α
and β, which define a “window of opportunity” for a player as long as α < β. The
value α represents the lower bound of the game states found for the player so far (or
−∞ if none have been found) and declares that the player has found a move to
ensure it can score at least that value. Higher values of α mean the player is doing
well; when α = +∞, the player has won and the search can terminate.

The value β represents the upper bound of game states so far (or +∞ if none have
been found) and declares the maximum value the player can achieve. When β drops
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lower and lower, the opponent is doing better at restricting the player’s options.
Since AlphaBeta has a maximum ply depth beyond which it will not search, any
decisions it makes are limited to this scope.

AlphaBeta Summary
Best, Average: O(bply/2)    Worst: O(bply)

bestmove (s, player, opponent)

  [move, score] = alphaBeta (s, ply, player, opponent, -∞, ∞) 
  return move
end

alphaBeta (s, ply, player, opponent, low, high)
  best = [null, null]

  if ply is 0 or there are no valid moves then 
    score = evaluate s for player
    return [null, score]

  foreach valid move m for player in state s do
    execute move m on s
    [move, score] = alphaBeta (s, ply-1, opponent, player, -high, -low)
    undo move m on s
    if -score > best.score then
      low = -score
      best = [m, -low]

    if low ≥ high then return best 
  return best
end

At start, worst player can do is lose (low = –∞). Best player can do is win (high
= +∞).

AlphaBeta evaluates leaf nodes as in NegMax.

Stop exploring sibling nodes when worst score possible by opponent equals or
exceeds our maximum threshold.

The game tree in Figure 7-9 shows the [α, β] values as AlphaBeta executes; initially
they are [–∞, ∞]. With a two-ply search, AlphaBeta is trying to find the best move
for O when considering just the immediate countermove for X.

Because AlphaBeta is recursive, we can retrace its progress by considering a traver‐
sal of the game tree. The first move AlphaBeta considers is for O to play in the
upper-left corner. After all five of X’s countermoves are evaluated, it is evident
that X can ensure only a score of –2 for itself (using the static evaluation
BoardEvaluation for tic-tac-toe). When AlphaBeta considers the second move for
O (playing in the middle of the left column), its [α, β] values are now [–2, ∞], which
means “the worst that O can end up with so far is a state whose score is –2, and the
best that O can do is still win the game.” When the first countermove for X is evalu‐
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ated, AlphaBeta detects that X has won, which falls outside of this “window of
opportunity,” so further countermoves by X no longer need to be considered.

To explain how AlphaBeta prunes the game tree to eliminate nonproductive nodes,
Figure 7-10 presents a three-ply search of Figure 7-5 that expands 66 nodes
(whereas the corresponding Minimax game tree would require 156 nodes).

Figure 7-10. AlphaBeta three-ply search

At the initial node n in the game tree, player O must consider one of six potential
moves. Pruning can occur on either the player’s turn or the opponent’s turn. In the
search shown in Figure 7-10, there are two such examples:

Player’s turn
Assume O plays in the middle of the left column and X responds by playing in
the middle of the top row (this is the leftmost grandchild of the root node in
the search tree). From O’s perspective, the best score that O can force is –1
(note that in the diagram the scores are shown as 1 because AlphaBeta uses the
same scoring mechanism used by NegMax). This value is remembered when it
tries to determine what O can achieve if X had instead countered by playing in
the middle of the bottom row. Note that [α, β] is now [–∞, –1]. AlphaBeta
evaluates the result when O plays in the middle of the top row and computes
the score 1. Because this value is greater than or equal to the –1 value, the
remaining three potential moves for O in this level are ignored.

Opponent’s turn
Assume O plays in the middle of the left column and X responds by playing in
the upper-right corner, immediately winning the game. AlphaBeta can ignore
X’s two other potential moves, because O will prune the remaining nodes in the
search subtree “rooted” in the decision to play in the middle of the left column.
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The pruning of the search occurs when α ≥ β, or in other words, when the “window
of opportunity” closes. When AlphaBeta is based on Minimax, there are two ways
to prune the search, known as α-prune and β-prune; in the simpler AlphaBeta
based on NegMax, these two cases are combined into the one discussed here.
Because AlphaBeta is recursive, the range [α, β] represents the window of opportu‐
nity for the player, and the window of opportunity for the opponent is [–β, –α].
Within the recursive invocation of AlphaBeta the player and opponent are swap‐
ped, and the window is similarly swapped.

Solution
The AlphaBeta implementation in Example 7-4 augments NegMax by terminating
early the evaluation of game states once it becomes clear that either the player can’t
guarantee a better position (an α-prune) or the opponent can’t force a worse posi‐
tion (a β-prune).

Example 7-4. AlphaBeta implementation

public class AlphaBetaEvaluation implements IEvaluation {
  IGameState state;    /** State to be modified during search. */
  int ply;             /** Ply depth. How far to continue search. */

  public AlphaBetaEvaluation (int ply) { this.ply = ply; }
  public IGameMove bestMove (IGameState s,
                             IPlayer player, IPlayer opponent) {
    state = s.copy();
    MoveEvaluation me = alphabeta (ply, player, opponent,
                                     MoveEvaluation.minimum(),
                                     MoveEvaluation.maximum());
    return me.move;
  }

  MoveEvaluation alphabeta (int ply, IPlayer player, IPlayer opponent,
                            int alpha, int beta) {
    // If no moves, return board evaluation from player's perspective.
    Iterator<IGameMove> it = player.validMoves (state).iterator();
    if (ply == 0 || !it.hasNext()) {
      return new MoveEvaluation (player.eval (state));
    }
    // Select "maximum of negative value of children" that improves alpha
    MoveEvaluation best = new MoveEvaluation (alpha);
    while (it.hasNext()) {
      IGameMove move = it.next();

      move.execute (state);
      MoveEvaluation me = alphabeta (ply-1,opponent,player,-beta,-alpha);
      move.undo (state);
      // If improved upon alpha, keep track of this move.
      if (-me.score > alpha) {
        alpha = -me.score;
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        best = new MoveEvaluation (move, alpha);
      }
      if (alpha >= beta) { return best; } // search no longer productive.
    }
    return best;
  }
}

The moves found will be exactly the same as those found by Minimax. But because
many states are removed from the game tree as it is expanded, execution time is
noticeably less for AlphaBeta.

Analysis
To measure the benefit of AlphaBeta over NegMax, we compare the size of their
respective game trees. This task is complicated because AlphaBeta will show its
most impressive savings if the opponent’s best move is evaluated first whenever
AlphaBeta executes. When there is a fixed number b of moves at each game state,
the total number of potential game states to search in a d-ply AlphaBeta is on the
order of bd. If the moves are ordered by decreasing favorability (i.e., the best move
first), we still have to evaluate all b children for the initiating player (because we are
to choose his best move); however, in the best case we need to evaluate only the first
move by the opponent. Note in Figure 7-9 that, because of move ordering, the
prune occurs after several moves have been evaluated, so the move ordering for that
game tree is not optimal.

In the best case, therefore, AlphaBeta evaluates b game states for the initial player
on each level, but only one game state for the opponent. So, instead of expanding
b*b*b* … *b*b (a total of d times) game states on the dth level of the game tree,
AlphaBeta may require only b*1*b*…*b*1 (a total of d times). The resulting num‐
ber of game states is bd/2, an impressive savings.

Instead of simply trying to minimize the number of game states, AlphaBeta could
explore the same total number of game states as Minimax. This would extend the
depth of the game tree to 2*d, thus doubling how far ahead the algorithm can look.

To empirically evaluate Minimax and AlphaBeta, we construct a set of initial tic-
tac-toe board states that are possible after k moves have been made. We then com‐
pute Minimax and AlphaBeta with a ply of 9 – k, which ensures all possible moves
are explored. The results are shown in Table 7-1. Observe the significant reduction
of explored states using AlphaBeta.

Table 7-1. Statistics comparing Minimax versus AlphaBeta

Ply Minimax states AlphaBeta states Aggregate reduction

6 549,864 112,086 80%

7 549,936 47,508 91%

8 549,945 27,565 95%
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Individual comparisons show the dramatic improvement of AlphaBeta; some of
these cases explain why AlphaBeta is so powerful. For the game state shown in
Figure 7-11, AlphaBeta explores only 450 game states (instead of 8,232 for Mini‐
max, a 94.5% reduction) to determine that player X should select the center square,
after which a win is assured.

Figure 7-11. Sample tic-tac-toe board after two plays

However, the only way to achieve such deep reductions is if the available moves are
ordered such that the best move appears first. Because our tic-tac-toe solution does
not order moves in this fashion, some anomalies will result. For example, given the
same board state rotated 180 degrees (Figure 7-12), AlphaBeta will explore 960
game states (an 88.3% reduction) because it expands the game tree using a different
ordering of valid moves. For this reason, search algorithms often reorder moves
using a static evaluation function to reduce the size of the game tree.

Figure 7-12. Sample tic-tac-toe board after two plays, rotated

Search Trees
Games that have just one player are similar to game trees, featuring an initial state
(the top node in the search tree) and a sequence of moves that transforms the board
state until a goal state is reached. A search tree represents the set of intermediate
board states as a path-finding algorithm progresses. The computed structure is a
tree because the algorithm ensures it does not visit a board state twice. The algo‐
rithm decides the order of board states to visit as it attempts to reach the goal.

We’ll explore search trees using an 8-puzzle, which is played on a 3×3 grid contain‐
ing eight square tiles numbered 1 to 8 and an empty space that contains no tile. A
tile adjacent (either horizontally or vertically) to the empty space can be moved by
sliding it into the empty space. The aim is to start from a shuffled initial state and
move tiles to achieve the goal state. The eight-move solution in Figure 7-13 is recor‐
ded as the bold path from the initial node to the goal node.
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Figure 7-13. Sample 8-puzzle search
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Search trees can rapidly explode to contain (potentially) billions or trillions of states.
The algorithms in this chapter describe how to efficiently search through these trees
more rapidly than using a blind search. To describe the inherent complexity of the
problem, we introduce Depth-First Search and Breadth-First Search as two poten‐
tial approaches to path-finding algorithms. We then present the powerful A*Search
algorithm for finding a minimal-cost solution (under certain conditions). We’ll now
briefly summarize the core classes, illustrated in Figure 7-14, that will be used when
discussing search tree algorithms.

Figure 7-14. Core interfaces and classes for search-tree algorithms

The INode interface abstracts the essential concepts needed to conduct searches
over a board state:

Generate valid moves
validMoves() returns a list of available moves for a board state.

Evaluate the board state
score(int) associates an integer score with the board state, representing the
result of an evaluation function; score() returns the evaluation result previ‐
ously associated with the board state.

Manage the board state
copy() returns an identical copy of the board state (except for the optional
stored data); equivalent(INode) determines whether two board states are
equal (sophisticated implementations may detect rotational symmetries in the
board state or other means for equivalence). key() returns an object to support
an equivalence check: if two board states have the same key() result, the board
states are equivalent.

Managing optional board state data
storedData(Object o) associates the given object with the board state to be
used by search algorithms; storedData() returns the optionally stored data
that may be associated with the board state.

The INodeSet interface abstracts the underlying implementation of a set of INodes.
Some algorithms require a queue of INode objects, some a stack, and others a bal‐
anced binary tree. Once properly constructed (using the StateStorageFactory
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class), the provided operations enable algorithms to manipulate the state of
the INode set no matter the underlying data structure used. The IMove interface
defines how moves can manipulate the board state; the specific move classes are
problem-specific, and the search algorithm need not be aware of their specific
implementation.

From a programming perspective, the heart of the path-finding algorithm for a
search tree is the implementation of the ISearch interface shown in Example 7-5.
Given such a solution, the moves that produced the solution can be extracted.

Example 7-5. Common interface for search-tree path finding

/**
 * Given an initial state, return a Solution to the final
 * state, or null if no such path can be found.
 */
public interface ISearch {
  Solution search (INode initial, INode goal);
}

Given a node representing the initial board state and a desired goal node, an
ISearch implementation computes a path representing a solution, or returns null if
no solution was found. To differentiate from game trees, we use the term board state
when discussing search tree nodes.

Path-Length Heuristic Functions
A blind-search algorithm uses a fixed strategy rather than evaluating the board
state. A depth-first blind search simply plays the game forward by arbitrarily choos‐
ing the next move from available choices in that board state, backtracking when it
hits its maximum expansion depth. A breadth-first blind search methodically
explores all possible solutions with k moves before first attempting any solution
with k + 1 moves. Surely there must be a way to guide the search based on the char‐
acteristics of the board states being investigated, right?

The discussion of A*Search will show searches over the 8-puzzle using different
heuristic functions. These heuristic functions do not play the game, rather they esti‐
mate the number of remaining moves to a goal state from a given board state and
can be used to direct the path-finding search. For example, in the 8-puzzle, such a
function would evaluate for each tile in the board state the number of moves to
position it in its proper location in the goal state. Most of the difficulty in path find‐
ing is crafting effective heuristic functions.

Depth-First Search
Depth-First Search attempts to locate a path to the goal state by making as much
forward progress as possible. Because some search trees explore a high number of
board states, Depth-First Search is practical only if a maximum search depth is
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fixed in advance. Furthermore, loops must be avoided by remembering each state
and ensuring it is visited only once.

Depth-First Search Summary
Best: O(b*d)    Average, Worst: O(bd)

search (initial, goal, maxDepth)
  if initial = goal then return "Solution"
  initial.depth = 0

  open = new Stack 
  closed = new Set
  insert (open, copy(initial))

  while open is not empty do

    n = pop (open) 
    insert (closed, n)
    foreach valid move m at n do
      nextState = state when playing m at n
      if closed doesn't contain nextState then

        nextState.depth = n.depth + 1 
        if nextState = goal then return "Solution"
        if nextState.depth < maxDepth then

          insert (open, nextState) 

  return "No Solution"
end

Depth-First Search uses a Stack to store open states to be visited.

Pop the most recent state from the stack.

Depth-First Search computes the depth to avoid exceeding maxDepth.

Inserting the next state will be a push operation since open is a stack.

Depth-First Search maintains a stack of open board states that have yet to be visited
and a set of closed board states that have been visited. At each iteration, Depth-First
Search pops from the stack an unvisited board state and expands it to compute the
set of successor board states given the available valid moves. The search terminates
if the goal state is reached. Any successor board states that already exist within the
closed set are discarded. The remaining unvisited board states are pushed onto the
stack of open board states and the search continues.

Figure 7-15 shows the computed search tree for an initial 8-puzzle board state using
a depth limit of 9. Note how a path of 8 moves is found to the solution (marked as
GOAL) after some exploration to depth 9 in other areas of the tree. In all, 50 board
states were processed and 4 remain to be explored (shown in light gray). Thus, we

P
ath

Find
ing

 in
A

I

Depth-First Search | 193



have solved the puzzle in this case, but we cannot be sure we have found the best
(shortest) solution.

Figure 7-15. Sample Depth-First Search tree for 8-puzzle

Input/Output
The algorithm starts from an initial board state and seeks a goal state. It returns a
sequence of moves that represents a path from the initial state to the goal state (or
declares that no such solution was found).

Context
Depth-First Search is a blind search that is made practical by restricting the search
to stop after a fixed depth bound, maxDepth, is reached, which helps manage mem‐
ory resources.

Solution
Depth-First Search stores the set of open (i.e., yet to be visited) board states in a
stack, and retrieves them one at a time for processing. In the implementation shown
in Example 7-6, the closed set is stored in a hash table to efficiently determine when
not to revisit a board state previously encountered within the search tree; the hash
function used is based on the key computed for each INode object.

Each board state stores a reference, called a DepthTransition, that records (a) the
move that generated it, (b) the previous state, and (c) the depth from the initial
position. The algorithm generates copies of each board state, because the moves are
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applied directly to the boards and not undone. As soon as a node is identified as the
goal, the search algorithm terminates (this is true for Breadth-First Search as well).

Example 7-6. Depth-First Search implementation

public Solution search(INode initial, INode goal) {
    // If initial is the goal, return now.
    if (initial.equals (goal)) { return new Solution (initial, goal); }

    INodeSet open = StateStorageFactory.create (OpenStateFactory.STACK);
    open.insert (initial.copy());

    // states we have already visited.
    INodeSet closed = StateStorageFactory.create (OpenStateFactory.HASH);
    while (!open.isEmpty()) {
      INode n = open.remove();
      closed.insert (n);

      DepthTransition trans = (DepthTransition) n.storedData();

      // All successor moves translate into appended OPEN states.
      DoubleLinkedList<IMove> moves = n.validMoves();
      for (Iterator<IMove> it = moves.iterator(); it.hasNext(); ) {
        IMove move = it.next();

        // Execute move on a copy since we maintain sets of board states.
        INode successor = n.copy();
        move.execute (successor);

        // If already visited, try another state.
        if (closed.contains (successor) != null) { continue; }

        int depth = 1;
        if (trans != null) { depth = trans.depth+1; }

        // Record previous move for solution trace. If solution, leave now,
        // otherwise add to the OPEN set if still within depth bound
        successor.storedData (new DepthTransition (move, n, depth));
        if (successor.equals (goal)) {
          return new Solution (initial, successor);
        }
        if (depth < depthBound) { open.insert (successor); }
      }
    }

    return new Solution (initial, goal, false);  // No solution
}

Board states are stored to avoid visiting the same state twice. We assume there is
an efficient function to generate a unique key for a board state; we consider two
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board states to be equivalent if this function generates the same key value for the
two states.

Analysis
Assume d is the maximum depth bound for Depth-First Search and define b to be
the branching factor for the underlying search tree.

The performance of the algorithm is governed by problem-specific and generic
characteristics. In general, the core operations provided by the open and closed
sets may unexpectedly slow the algorithm down, because naïve implementations
would require O(n) performance to locate a board state within the set. The key
operations include:

open.remove()
Remove the next board state to evaluate.

closed.insert(INode state)
Add board state to the closed set.

closed.contains(INode state)
Determine whether board state already exists in closed.

open.insert(INode state)
Add board state into the open set, to be visited later.

Because Depth-First Search uses a stack to store the open set, remove and insert
operations are performed in constant time. Because closed is a hash table that stores
the board states using key values (as provided by the board state class implementing
INode) the lookup time is amortized to be constant.

The problem-specific characteristics that affect the performance are (a) the number
of successor board states for an individual board state, and (b) the ordering of valid
moves. Some games have a large number of potential moves at each board state,
which means that many depth-first paths may be ill-advised. Also, the way that
moves are ordered will affect the overall search. If any heuristic information is avail‐
able, make sure that moves most likely leading to a solution appear earlier in the
ordered list of valid moves.

We evaluate Depth-First Search using a set of three examples (N1, N2, and N3) to
show how capricious the search is with seemingly slight differences in state. In each
example, 10 tiles are moved from the goal state. Occasionally Depth-First Search
penetrates quickly to locate a solution. In general, the size of the search tree grows
exponentially based on the branching factor b. For the 8-puzzle, the branching factor
is between 2 and 4, based on where the empty tile is located, with an average of 2.67.
We make the following two observations:

An ill-chosen depth level may prevent a solution from being found
For initial position N2 shown in Figure 7-16 and a depth of 25, no solution was
found after searching 20,441 board states. How is this even possible? It’s
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because Depth-First Search will not visit the same board state twice. Specifi‐
cally, the closest this particular search comes to finding the solution is on the
3,451st board state, which is inspected in the 25th level. That board is only three
moves away from the solution! But because the board was visited just as the
depth limit was reached, expansion stopped and the board was added to the
closed set. If Depth-First Search later encountered this node again at an earlier
level, it would not explore further because the node would be in the closed set.

Figure 7-16. Initial position N2

It may seem better, therefore, to set the maximum depth level to be a high
value; but as shown in Figure 7-17, this routinely leads to extremely large
search trees and may not guarantee a solution will be found.

Figure 7-17. Search-tree size for Depth-First Search as depth increases

As the depth level increases, the solution found may be suboptimal
The discovered solutions grow as the depth limit increases, sometimes to two
or three times larger than necessary.

Interestingly, given the example N1, an unbounded Depth-First Search actually
finds a 30-move solution after processing only 30 board states, with 23 left in its
open set to be processed. However, this fortunate series of events is not repeated for
examples N2 and N3.
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Breadth-First Search
Breadth-First Search attempts to locate a path by methodically evaluating board
states closest to the initial board state. Breadth-First Search is guaranteed to find
the shortest path to the goal state, if such a path exists.

The essential difference from Depth-First Search is that Breadth-First Search
maintains a queue of open states that have yet to be visited, whereas Depth-First
Search uses a stack. At each iteration, Breadth-First Search removes from the front
of the queue an unvisited board state and expands it to compute the set of successor
board states given the valid moves. If the goal state is reached, then the search ter‐
minates. Like Depth-First Search, this search makes sure not to visit the same state
twice. Any successor board states that already exist within closed are discarded. The
remaining unvisited board states are appended to the end of the queue of open
board states, and the search continues.

Using the example from the 8-puzzle starting at Figure 7-18, the computed search
tree is shown in Figure 7-19. Note how a solution is found with five moves after all
paths with four moves are explored (and nearly all five-move solutions were
inspected). The 20 light-gray board states in the figure are board states in the open
queue waiting to be inspected. In total, 25 board states were processed.

Figure 7-18. Starting board for Breadth-First Search

Input/Output
The algorithm starts from an initial board state and seeks a goal state. It returns a
sequence of moves that represents a minimal-cost solution from the initial state to
the goal state (or declares that no such solution was found given existing resources).

Context
A blind search is practical only if the predicted search space is within the memory
space of the computer. Because Breadth-First Search methodically checks all short‐
est paths first, it may take quite a long time to locate paths that require a large num‐
ber of moves. This algorithm may not be suitable if you need only some path from
an initial state to the goal (i.e., if there is no need for it to be the shortest path).
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Figure 7-19. Sample Breadth-First Search tree for 8-puzzle

Breadth-First Search Summary
Best, Average, Worst: O(bd)

search (initial, goal)
  if initial = goal then return "Solution"

  open = new Queue 
  closed = new Set
  insert (open, copy(initial))

  while open is not empty do

    n = head (open) 
    insert (closed, n)
    foreach valid move m at n do
      nextState = state when playing m at n
      if closed doesn't contain nextState then
        if nextState = goal then return "Solution"

        insert (open, nextState) 

  return "No Solution"
end

Breadth-First Search uses a Queue to store open states to be visited.

Remove the oldest state from the queue.

Inserting the next state will be an append operation since open is a queue.

Solution
Breadth-First Search stores the set of open (i.e., yet to be visited) board states in a
queue, and retrieves them one at a time for processing. The closed set is stored using
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a hash table. Each board state stores a back link, called a Transition, that records
the move that generated it and a reference to the previous state. Breadth-First
Search generates copies of each board state, because moves are applied directly to
the boards and not undone. Example 7-7 shows the implementation.

Example 7-7. Breadth-First Search implementation

public Solution search (INode initial, INode goal) {
    // Return now if initial is the goal
    if (initial.equals (goal)) { return new Solution (initial, goal); }

    // Start from the initial state
    INodeSet open = StateStorageFactory.create (StateStorageFactory.QUEUE);
    open.insert (initial.copy());

    // states we have already visited.
    INodeSet closed = StateStorageFactory.create (StateStorageFactory.HASH);
    while (!open.isEmpty()) {
      INode n = open.remove();
      closed.insert (n);

      // All successor moves translate into appended OPEN states.
      DoubleLinkedList<IMove> moves = n.validMoves();
      for (Iterator<IMove> it = moves.iterator(); it.hasNext(); ) {
        IMove move = it.next();

        // make move on a copy
        INode successor = n.copy();
        move.execute (successor);

        // If already visited, search this state no more
        if (closed.contains (successor) != null) {
          continue;
        }

        // Record previous move for solution trace. If solution, leave
        // now, otherwise add to the OPEN set.
        successor.storedData (new Transition (move, n));
        if (successor.equals (goal)) {
          return new Solution (initial, successor);
        }
        open.insert (successor);
      }
    }
}
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Analysis
As with Depth-First Search, the algorithm’s performance is governed by problem-
specific and generic characteristics. The same analysis regarding Depth-First
Search applies here, and the only difference is the size of the set of open board
states. Breadth-First Search must store on the order of bd board states in open,
where b is the branching factor for the board states and d is the depth of the solu‐
tion found. This is much higher than Depth-First Search, which needs to store only
about b*d board states in open at any one time, based on the actively pursued board
state at depth d. Breadth-First Search is guaranteed to find the solution with the
least number of moves that transforms the initial board state to the goal board state.

Breadth-First Search only adds a board state to the open set if it does not already
exist in the closed set. You can save additional space (at the expense of some extra
processing) by only adding the board state if you first confirm that it is not already
contained by the open set.

A*Search
Breadth-First Search finds an optimal solution (if one exists), but it may explore a
tremendous number of nodes because it makes no attempt to intelligently select the
order of moves to investigate. In contrast, Depth-First Search tries to rapidly find a
path by making as much progress as possible when investigating moves; however, it
must be bounded because otherwise it may fruitlessly search unproductive areas of
the search tree. A*Search adds heuristic intelligence to guide its search rather than
blindly following either of these fixed strategies.

A*Search is an iterative, ordered search that maintains a set of open board states to
explore in an attempt to reach the goal state. At each search iteration, A*Search uses
an evaluation function f(n) to select a board state n from open whose f(n) has the
smallest value. f(n) has the distinctive structure f(n) = g(n) + h(n), where:

• g(n) records the length of the shortest sequence of moves from the initial state
to board state n; this value is recorded as the algorithm executes

• h(n) estimates the length of the shortest sequence of moves from n to the goal
state

Thus, f(n) estimates the length of the shortest sequence of moves from initial state
to goal state, passing through n. A*Search checks whether the goal state is reached
only when a board state is removed from the open board states (differing from
Breadth-First Search and Depth-First Search, which check when the successor
board states are generated). This difference ensures the solution represents the
shortest number of moves from the initial board state, as long as h(n) never
overestimates the distance to the goal state.

Having a low f(n) score suggests the board state n is close to the final goal state. The
most critical component of f(n) is the heuristic evaluation that computes h(n),
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because g(n) can be computed on the fly by recording with each board state its
depth from the initial state. If h(n) is unable to accurately separate promising board
states from unpromising board states, A*Search will perform no better than the
blind searches already described. In particular, h(n) must be admissable—that is, it
must never overstate the actual minimum cost of reaching the goal state. If the esti‐
mate is too high, A*Search may not find the optimal solution. However, it is diffi‐
cult to determine an effective h(n) that is admissible and that can be computed
effectively. There are numerous examples of inadmissible h(n) that still lead to solu‐
tions that are practical without necessarily being optimal.

A*Search Summary
Best: O(b*d)    Average, Worst: O(bd)

search (initial, goal)
  initial.depth = 0

  open = new PriorityQueue 
  closed = new Set
  insert (open, copy(initial))

  while open is not empty do
    n = minimum (open)
    insert (closed, n)
    if n = goal then return "Solution"
    foreach valid move m at n do
      nextState = state when playing m at n
      if closed contains nextState then continue

      nextState.depth = n.depth + 1

      prior = state in open matching nextState 
      if no prior state or nextState.score < prior.score then

        if prior exists 

          remove (open, prior) 

        insert (open, nextState) 
  return "No Solution"
end

A*Search stores open states in a priority queue by evaluated score.

Must be able to rapidly locate matching node in open.

If A*Search revisits a prior state in open that now has a lower score…

…replace prior state in open with better scoring alternative.

Since open is a priority queue, nextState is inserted based on its score.
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Input/Output
The algorithm starts from an initial board state in a search tree and a goal state. It
assumes the existence of an evaluation function f(n) with admissible h(n) function.
It returns a sequence of moves that represents the solution that most closely approx‐
imates the minimal-cost solution from the initial state to the goal state (or declares
that no such solution was found given existing resources).

Context
Using the example from the 8-puzzle starting at Figure 7-20, two computed search
trees are shown in Figures 7-21 and 7-22. Figure 7-21 uses the GoodEvaluator f(n)
function proposed by Nilsson (1971). Figure 7-22 uses the WeakEvaluator f(n) func‐
tion also proposed by Nilsson. These evaluation functions will be described shortly.
The light-gray board states depict the open set when the goal is found.

Figure 7-20. Starting board state for A*Search

Both GoodEvaluator and WeakEvaluator locate the same nine-move solution to the
goal node (labeled GOAL) but GoodEvaluator is more efficient in its search. Let’s
review the f(n) values associated with the nodes in both search trees to see why the
WeakEvaluator search tree explores more nodes.

Observe that just two moves away from the initial state in the GoodEvaluator search
tree, there is a clear path of nodes with ever-decreasing f(n) values that lead to the
goal node. In contrast, the WeakEvaluator search tree explores four moves away
from the initial state before narrowing its search direction. WeakEvaluator fails to
differentiate board states; indeed, note how its f(n) value of the goal node is actually
higher than the f(n) values of the initial node and all three of its children nodes.

Solution
A*Search stores the open board states so it can both efficiently remove the board
state whose evaluation function is smallest and determine whether a specific board
state exists within open. Example 7-8 contains a sample Java implementation.
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Figure 7-21. Sample A*Search tree in 8-puzzle using GoodEvaluator
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Figure 7-22. Sample A*Search tree in 8-puzzle using WeakEvaluator

Example 7-8. A*Search implementation

public Solution search (INode initial, INode goal) {
  // Start from the initial state
  int type = StateStorageFactory.PRIORITY_RETRIEVAL;
  INodeSet open = StateStorageFactory.create (type);
  INode copy = initial.copy();
  scoringFunction.score (copy);
  open.insert (copy);

  // Use Hashtable to store states we have already visited.
  INodeSet closed = StateStorageFactory.create (StateStorageFactory.HASH);
  while (!open.isEmpty()) {
    // Remove node with smallest evaluation function and mark closed.
    INode best = open.remove();

    // Return if goal state reached.
    if (best.equals (goal)) { return new Solution (initial, best); }
    closed.insert (best);

P
ath

Find
ing

 in
A

I

A*Search | 205



    // Compute successor moves and update OPEN/CLOSED lists.
    DepthTransition trans = (DepthTransition) best.storedData();
    int depth = 1;
    if (trans != null) { depth = trans.depth+1; }

    for (IMove move : best.validMoves()) {
      // Make move and score the new board state.
      INode successor = best.copy();
      move.execute (successor);

      if (closed.contains(successor) != null) { continue; }

      // Record previous move for solution trace and compute
      // evaluation function to see if we have improved.
      successor.storedData (new DepthTransition (move, best, depth));
      scoringFunction.score (successor);

      // If not yet visited, or it has better score.
      INode exist = open.contains (successor);
      if (exist == null || successor.score() < exist.score()) {
        // remove old one, if one had existed, and insert better one
        if (exist != null) {
          open.remove (exist);
        }
        open.insert(successor);
      }
    }
  }

  // No solution.
  return new Solution (initial, goal, false);
}

As with Breadth-First Search and Depth-First Search, board states are entered into
the closed set when processed. Each board state stores a reference, called a Depth
Transition, that records (a) the move that generated it, (b) the previous state, and
(c) the depth from the initial position. That last value, the depth, is used as the g(n)
component within the evaluation function. The algorithm generates copies of each
board state, because the moves are applied directly to the boards and not undone.

Because A*Search incorporates heuristic information that includes a g(n) computa‐
tional component, there is one situation when A*Search may review a past decision
on boards already visited. A board state to be inserted into the open set may have a
lower evaluation score than an identical state that already appears in open. If so,
A*Search removes the existing board in open with the higher score, since that state
will not be part of the minimum-cost solution. Recall the situation in Depth-First
Search where board states at the depth limit were found to be (as it turned out) only
three moves away from the goal state (see “Analysis” on page 196). These board
states were placed into the closed set, never to be processed again. A*Search avoids
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this mistake by continuing to evaluate the board state in open with the lowest evalu‐
ated score.

The success of A*Search is directly dependent on its heuristic function. The h(n)
component of f(n) must be carefully designed, and this effort is more of a craft than
a science. If h(n) is always zero, A*Search is nothing more than Breadth-First
Search. Furthermore, if h(n) overestimates the cost of reaching the goal, A*Search
may not be able to find the optimal solution, although it may be possible to return
some solution, assuming h(n) is not wildly off the mark. A*Search will find an opti‐
mal solution if its heuristic function h(n) is admissible.

Much of the available A*Search literature describes highly specialized h(n) func‐
tions for different domains, such as route finding on digital terrains (Wichmann
and Wuensche, 2004) or project scheduling under limited resources (Hartmann,
1999). Pearl (1984) has written an extensive (and unfortunately out-of-print) refer‐
ence for designing effective heuristics. Korf (2000) discusses how to design admissi‐
ble h(n) functions (defined in the following section). Michalewicz and Fogel (2004)
provide a recent perspective on the use of heuristics in problem solving, not just for
A*Search.

For the 8-puzzle, here are three admissible heuristic functions and one badly-
defined function:

FairEvaluator
P(n), where P(n) is the sum of the Manhattan distance that each tile is from its
“home.”

GoodEvaluator
P(n) + 3*S(n), where P(n) is as above and S(n) is a sequence score that checks
the noncentral squares in turn, allotting 0 for every tile followed by its proper
successor and 2 for every tile that is not; having a piece in the center scores 1.

WeakEvaluator
Counts the number of misplaced tiles.

BadEvaluator
Total the differences of opposite cells (across the center square) and compare
against the ideal of 16.

To justify why the first three heuristic functions are admissible, consider
WeakEvaluator, which simply returns a count from 0 to 8. Clearly this doesn’t over‐
estimate the number of moves but is a poor heuristic for discriminating among
board states. FairEvaluator computes P(n), the Manhattan distance that computes
the distance between two tiles assuming you can only move horizontally or verti‐
cally; this accurately sums the distance of each initial tile to its ultimate destination.
Naturally this underestimates the actual number of moves because in 8-puzzle you
can only move tiles neighboring the empty tile. What is important is not to overesti‐
mate the number of moves. GoodEvaluator adds a separate count 3*S(n) that
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detects sequences and adds to the move total when more tiles are out of sequence.
All three of these functions are admissible.

These functions evaluated the sample board state in Figure 7-23, with the results
shown in Table 7-2. You can see that all admissible functions located a shortest 13-
move solution while the nonadmissible heuristic function BadEvaluator found a
19-move solution with a much larger search tree.

Figure 7-23. Sample board state for evaluation functions

Table 7-2. Comparing three admissible h(n) functions and one nonadmissible
function

Measure name Evaluation of h(n) Statistics

GoodEvaluator 13 + 3*11 = 46 13-move solution
closed:18
open: 15

FairEvaluator 13 13-move solution
closed:28
open:21

WeakEvaluator 7 13-move solution
closed: 171
open: 114

BadEvaluator 9 19-move solution
closed: 1496
open: 767

Breadth-First Search and Depth-First Search inspect the closed set to see whether
it contains a board state, so we used a hash table for efficiency. However, A*Search
may need to reevaluate a board state that had previously been visited if its evaluated
score function is lower than the current state. Therefore, a hash table is not appro‐
priate because A*Search must be able to rapidly locate the board state in the open
priority queue with the lowest evaluation score.

Note that Breadth-First Search and Depth-First Search retrieve the next board
state from the open set in constant time because they use a queue and a stack,
respectively. If we stored the open set as an ordered list, performance suffers because
inserting a board state into the open set takes O(n). Nor can we use a binary heap to
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store the open set, because we don’t know in advance how many board states are to
be evaluated. Thus, we use a balanced binary tree, which offers O(log n) perfor‐
mance, where n is the size of the open set, when retrieving the lowest-cost board
state and for inserting nodes into the open set.

Analysis
The computational behavior of A*Search is entirely dependent on the heuristic
function. Russel and Norvig (2003) summarize the characteristics of effective
heuristic functions. Barr and Feigenbaum (1981) present several alternatives to con‐
sider when one cannot efficiently compute an admissible h(n) function. As the
board states become more complex, heuristic functions become more important
than ever—and more complicated to design. They must remain efficient to com‐
pute, or the entire search process is affected. However, even rough heuristic func‐
tions are capable of pruning the search space dramatically. For example, the 15-
puzzle, the natural extension of the 8-puzzle, includes 15 tiles in a 4×4 board. It
requires but a few minutes of work to create a 15-puzzle GoodEvaluator based on
the logic of the 8-puzzle GoodEvaluator. With the goal state of Figure 7-24 (left)
and an initial state of Figure 7-24 (right), A*Search rapidly locates a 15-move solu‐
tion after processing 39 board states. When the search ends, 43 board states remain
in the open set waiting to be explored.

With a 15-move limit, Depth-First Search fails to locate a solution after exploring
22,125 board states. After 172,567 board states (85,213 in the closed set and 87,354
remaining in the open set), Breadth-First Search runs out of memory when using
64MB of RAM to try the same task. Of course, you could add more memory or
increase the depth limit, but this won’t work in all cases since every problem is dif‐
ferent.

Figure 7-24. Goal for 15-puzzle (left) and sample starting board for 15-puzzle
(right)

But do not be fooled by how easily A*Search solved this sample 15-puzzle;
A*Search runs out of memory when attempting a more complicated initial board,
such as Figure 7-25.
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Figure 7-25. Complicated starting board for 15-puzzle

Clearly the rough evaluation function for the 15-puzzle is ineffective for the 15-
puzzle, which has over 1025 possible states (Korf, 2000).

Variations
Instead of only searching forward from the initial state, Kaindl and Kain (1997)
augment this search by simultaneously searching backward from the goal state. Ini‐
tially discarded by early AI researchers as being unworkable, Kaindl and Kainz have
presented powerful arguments that the approach should be reconsidered.

A common powerful alternative to A*Search, known as IterativeDeepeningA* (or
IDA*), relies on a series of expanding depth-first searches with a fixed cost bound
(Reinefeld, 1993). For each successive iteration, the bound is increased based on the
results of the prior iteration. IDA* is more efficient than Breadth-First Search or
Depth-First Search alone because each computed cost value is based on actual
move sequences rather than heuristic estimates. Korf (2000) has described how
powerful heuristics, coupled with IDA*, have been used to solve random instances
of the 15-puzzle, evaluating more than 400 million board states during the search.

Although A*Search produces minimal-cost solutions, the search space may be too
large for A*Search to complete. The major ideas that augment A*Search and
address these very large problems include:

Iterative deepening
This state search strategy uses repeated iterations of limited depth-first search,
with each iteration increasing the depth limit. This approach can prioritize the
nodes to be searched in successive iterations, thus reducing nonproductive
searching and increasing the likelihood of rapidly converging on winning
moves. Also, because the search space is fragmented into discrete intervals,
real-time algorithms can search as much space as allowed within a time period
and return a “best effort” result. The technique was first applied to A*Search
by (Korf, 1985) to create IDA*.
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Transposition tables
To avoid repeating computations that have already proved fruitless, we can
hash game states and store in a transposition table the length of the path (from
the source state) needed to reach each state. If the state appears later in the
search, and its current depth is greater than what was discovered earlier, the
search can be terminated. This approach can avoid searching entire subtrees
that will ultimately prove to be unproductive.

Hierarchy
If the game state can be represented as a hierarchy, rather than as a flat model,
techniques can be applied to restructure large search spaces into clusters, over
which A*Search can be run. Hierarchical Path-Finding A* (HPA*) is an
example of this approach (Botea et al., 2004).

Memory bound
Instead of restricting the search space by computation time, we could perform
a “lossy” search and throw away various nodes as the search progresses, focus‐
ing on searches within areas that are deemed relevant. Simplified Memory
Bounded A* (SMA*) is an example (Russell, 1992).

Reinefeld and Marsland (1994) summarize a variety of interesting extensions to
A*Search. Much information on the use of A*Search in AI systems is available in
textbooks and various online sources (Barr and Feigenbaum, 1981).

Comparing Search-Tree Algorithms
Breadth-First Search is guaranteed to find the solution with the least number of
moves from the initial state, although it may evaluate a rather large number of
potential move sequences as it operates. Depth-First Search tries to make as much
progress as possible each time it searches, and may locate a solution rather quickly,
but it also may waste a lot of time on searching parts of the search tree that seem to
offer no hope for success. A*Search, when paired with an admissible heuristic func‐
tion, takes the least time and finds the optimal solution, but finding an admissible
function may be difficult.

It is thus worthwhile to compare Depth-First Search, Breadth-First Search, and
A*Search directly. Using the 8-puzzle as our sample game, we created an initial state
by randomly moving n tiles (ranging from 2 to 14); note that the same tile will not
be moved twice in a row, because that would “undo” the move. Once n reached 32,
the searches ran out of memory. For each board state, we execute Breadth-First
Search, Depth-First Search(n), Depth-First Search(2*n), and A*Search. Note that
the parameters to Depth-First Search indicate the maximum allowed depth during
the search. For each move size n:

• We total the number of board states in the open and closed lists. This reveals the
efficiency of the algorithm in locating the solution. The columns marked with #
contain the average of these totals over all runs. This analysis focuses on the
number of states searched as the prime factor in determining search efficiency.
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• We total the number of moves in the solution once found. This reveals the effi‐
ciency of the found solution paths. The columns whose names begin with s
contain the average of these totals over all runs. The number in parentheses
records the number of trials that failed to locate a solution within the given ply
depth.

Table 7-3 contains the aggregate results of 1,000 trials, where n random moves were
made (n = 2 through 14). Table 7-3 shows two statistics: (a) the average number of
states of the generated search trees, and (b) the average number of moves of the
identified solutions.

Table 7-3. Comparing search algorithms

n #A* #BFS #DFS(n) #DFS(2n) sA* sBFS sDFS(n) sDFS(2n)

2 4 4.5 3 6.4 2 2 2 2

3 6 13.3 7.1 27.3 3 3 3 3

4 8 25.7 12.4 68.3 4 4 4 5

5 10 46.4 21.1 184.9 5 5 5 5.8

6 11.5 77.6 31.8 321 6 6 6 9.4 (35)

7 13.8 137.9 56.4 767.2 6.8 6.8 6.9 9.7 (307)

8 16.4 216.8 84.7 1096.7 7.7 7.7 7.9 (36) 12.9 (221)

9 21 364.9 144 2520.5 8.7 8.6 8.8 (72) 13.1 (353)

10 24.7 571.6 210.5 3110.9 9.8 9.5 9.8 (249) 16.4 (295)

11 31.2 933.4 296.7 6983.3 10.7 10.4 10.6 (474) 17.4 (364)

12 39.7 1430 452 6196.2 11.7 11.3 11.7 (370) 20.8 (435)

13 52.7 2337.1 544.8 12464.3 13.1 12.2 12.4 (600) 21.6 (334)

14 60.8 3556.4 914.2 14755.7 14.3 13.1 13.4 (621) 25.2 (277)

Note that as n increases linearly, the size of the search tree grows exponentially for
all blind approaches, but the A*Search tree remains manageable. To be precise, the
growth rates of these blind searches are estimated by the following functions:

BFS n ≅ 0.24 * n + 1 2.949

DFS n ≅ 1.43 * n + 1 2.275

DFS 2n ≅ 3.18 * n + 1 3.164
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Figure 7-26. Comparing search tree size for random positions

Breadth-First Search always finds the shortest path to the solution, but note that
A*Search is not far behind (because of the GoodEvaluator heuristic) even though it
explores significantly fewer board states. In separate trials of A*Search with up to 30
random moves, the growth rate of the search tree was O(n1.5147); although not linear,
this size is significantly smaller than for the blind searches. The actual exponent in
each of these growth rate functions is dependent on the branching factor for the
problem being solved. The results of Table 7-3 are shown graphically in Figure 7-26.

Finally, note how the horizon effect prevents Depth-First Search from solving
numerous cases (recall that this happens when a board state node that is only a step
away from the goal is added to the closed set). In fact, in this example run of 1,000
trials, Depth-First Search failed more than 60% of the time when using a maximum
depth bound of 13.
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Although all three searches have the potential to explore an exponential number
of states, A*Search explores the smallest number given an admissible h(n) estima‐
tion function.

There are other known ways to solve n2 – 1 sliding tile puzzles besides relying on
path finding. One ingenious approach proposed by Parberry (1995) is to use a
Divide and Conquer strategy. That is, given an n×n puzzle, where n > 3, first com‐
plete the leftmost column and topmost row and then recursively solve the resulting
(n − 1)2 − 1 puzzle. When the inner problem to be solved is the 3×3 square, simply
use brute force. This approach is guaranteed to find a solution that uses at most
5*n3 moves.
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8
Network Flow Algorithms

Many problems can be presented as a network of vertices and edges, with a capacity
associated with each edge over which commodities flow. The algorithms in this
chapter spring from the need to solve these specific classes of problems. Ahuja
(1993) contains an extensive discussion of numerous applications of network flow
algorithms:

Assignment
Given a set of tasks to be carried out and a set of employees, who may cost dif‐
ferent amounts depending on their assigned task, assign the employees to tasks
while minimizing the overall expense.

Bipartite matching
Given a set of applicants who have been interviewed for a set of job openings,
find a matching that maximizes the number of applicants selected for jobs for
which they are qualified.

Maximum flow
Given a network that shows the potential capacity over which goods can be
shipped between two locations, compute the maximum flow supported by
the network.

Transportation
Determine the most cost-effective way to ship goods from a set of supplying
factories to a set of retail stores.

Transshipment
Determine the most cost-effective way to ship goods from a set of supplying
factories to a set of retail stores, while potentially using a set of warehouses as
intermediate holding stations.
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Figure 8-1 shows how each of these problems can be represented as a network flow
from one or more source nodes to one or more terminal nodes. The most general
definition of a problem is at the bottom, and each of the other problems is a refine‐
ment of the problem beneath it. For example, the Transportation problem is a speci‐
alized instance of the Transshipment problem because transportation graphs do not
contain intermediate transshipment nodes. Thus, a program that solves Transship‐
ment problems can be applied to Transportation problems as well.

This chapter presents the Ford–Fulkerson algorithm, which solves the Maximum
Flow problem. Ford–Fulkerson can also be applied to Bipartite Matching problems,
as shown in Figure 8-1. Upon further reflection, the approach outlined in Ford–
Fulkerson can be generalized to solve the more powerful Minimal Cost Flow prob‐
lem, which enables us to solve the Transshipment, Transportation, and Assignment
problems using that algorithm.

In principle, you could apply Linear Programming (LP) to all of the problems
shown in Figure 8-1, but then you would have to convert these problems into the
proper LP form, whose solution would then have to be recast into the original prob‐
lem (we’ll show how to do this at the end of the chapter). LP is a method to compute
an optimal result (such as maximum profit or lowest cost) in a mathematical model
consisting of linear relationships. In practice, however, the specialized algorithms
described in this chapter outperform LP by several orders of magnitude for the
problems shown in Figure 8-1.

Network Flow
We model a flow network as a directed graph G = (V, E), where V is the set of verti‐
ces and E is the set of edges over these vertices. The graph itself is connected
(though not every edge need be present). A special source vertex s ∈ V produces
units of a commodity that flow through the edges of the graph to be consumed by a
sink vertex t ∈ V (also known as the target or terminus). A flow network assumes
the supply of units produced is infinite and that the sink vertex can consume all
units it receives.

Each edge (u, v) has a flow f(u, v) that defines the number of units of the commodity
that flows from u to v. An edge also has a fixed capacity c(u, v) that constrains the
maximum number of units that can flow over that edge. In Figure 8-2, each vertex
between the source s and the sink t is numbered, and each edge is labeled as f/c,
showing the flow over that edge and the maximum allowed capacity. The edge
between s and v1, for example, is labeled 5/10, meaning that 5 units flow over that
edge but it can sustain a capacity of up to 10. When no units are flowing over an
edge (as is the case with the edge between v5 and v2), f is zero, and only the capacity
is shown, outlined in a box.
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Figure 8-1. Relationship between network flow problems
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Figure 8-2. Sample flow network graph

The following criteria must be satisfied for any feasible flow f through a network:

Capacity constraint
The flow f(u, v) through an edge cannot be negative and cannot exceed the
capacity of the edge c(u, v). In other words, 0 ≤ f(u, v) ≤ c(u, v). If the network
does not contain an edge from u to v, we define c(u, v) to be 0.

Flow conservation
Except for the source vertex s and sink vertex t, each vertex u ∈ V must satisfy
the property that the sum of f(v, u) for all edges (v, u) ∈ E (the flow into u) must
equal the sum of f(u, w) for all edges (u, w) ∈ E (the flow out of u). This prop‐
erty ensures that flow is neither produced nor consumed in the network, except
at s and t.

Skew symmetry
The quantity f(v, u) represents the opposite of the net flow from vertex u to v.
This means that f(u, v) must equal –f(v, u).

In the ensuing algorithms, we refer to a network path that is a noncyclic path of
unique vertices < v1, v2, …, vn > involving n-1 consecutive edges (vi, vj) in E. In the
flow network shown in Figure 8-2, one possible network path is < v3, v5, v2, v4 >. In a
network path, the direction of the edges can be ignored, which is necessary to prop‐
erly construct augmenting paths as we will see shortly. In Figure 8-2, a possible net‐
work path is < s, v1, v4, v2, v5, t >.

Maximum Flow
Given a flow network, you can compute the maximum flow (mf) between vertices s
and t given the capacity constraints c(u, v) ≥ 0 for all directed edges e = (u, v) in E.
That is, compute the largest amount that can flow out of source s, through the net‐
work, and into sink t given specific capacity limits on individual edges. Starting with
the lowest possible flow—a flow of 0 through every edge—Ford–Fulkerson succes‐
sively locates an augmenting path through the network from s to t to which more
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flow can be added. The algorithm terminates when no augmenting paths can be
found. The Max-flow Min-cut theorem (Ford and Fulkerson, 1962) guarantees that
with non-negative integral flows and capacities, Ford–Fulkerson always terminates
and identifies the maximum flow in a network.

The flow network is defined by a graph G = (V, E) with designated start vertex s and
sink vertex t. Each directed edge e = (u, v) in E has a defined integer capacity c(u, v)
and actual flow f(u, v). A path can be constructed from a sequence of n vertices from
V, which we call p0, p1, …, pn-1, where p0 is the designated source vertex of the flow
network and pn-1 is its sink vertex. The path is constructed from forward edges,
where the edge over consecutive vertices (pi, pi+1) ∈ E, and backward edges, where
the edge (pi+1, pi) ∈ E and the path traverses the edge opposite to its direction.

Input/Output
The flow network is defined by a graph G = (V, E) with designated start vertex s and
sink vertex t. Each directed edge e = (u, v) in E has a defined integer capacity c(u, v)
and actual flow f(u, v).

For each edge (u, v) in E, Ford–Fulkerson computes an integer flow f(u, v) repre‐
senting the units flowing through edge (u, v). As a side effect of its termination,
Ford–Fulkerson computes the min cut of the network—in other words, the set of
edges that form a bottleneck, preventing further units from flowing across the net‐
work from s to t.

Solution
The implementation of Ford–Fulkerson we’ll describe here uses linked lists to store
edges. Each vertex u maintains two separate lists: forward edges for the edges ema‐
nating from u and backward edges for the edges coming into u; thus each edge
appears in two lists. The code repository provided with this book contains an imple‐
mentation using a two-dimensional matrix to store edges, a more appropriate data
structure to use for dense flow network graphs.

Ford–Fulkerson relies on the following structures:

FlowNetwork
Represents the network flow problem. This abstract class has two subclasses,
one based on adjacency lists and the other using an adjacency matrix. The
getEdgeStructure() method returns the underlying storage used for the
edges.

VertexStructure
Maintains two linked lists (forward and backward) for the edges leaving and
entering a vertex.

EdgeInfo
Records information about edges in the network flow.
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VertexInfo
Records the augmenting path found by the search method. It records the previ‐
ous vertex in the augmenting path and whether it was reached through a for‐
ward or backward edge.

Ford–Fulkerson Summary
Best, Average, Worst: O(E*mf)

compute (G)

  while exists augmenting path in G do 
    processPath (path)
end

processPath (path)
  v = sink
  delta = ∞

  while v ≠ source do 
    u = vertex previous to v in path
    if edge(u,v) is forward then
      t = (u,v).capacity - (u,v).flow
    else
      t = (v,u).flow
    delta = min (t, delta)
    v = u

  v = sink

  while v ≠ source do 
    u = vertex previous to v in path

    if edge(u,v) is forward then 
      (u,v).flow += delta
    else
      (v,u).flow -= delta
    v = u
end

Can loop up to mf times, making overall behavior O(E*mf).

Work backward from sink to find edge with lowest potential to increase.

Adjust augmenting path accordingly.

Forward edges increase flow; backward edges reduce.

Ford–Fulkerson is implemented in Example 8-1 and illustrated in Figure 8-4. A
configurable Search object computes the augmented path in the network to which
additional flow can be added without violating the flow network criteria. Ford–Ful‐
kerson makes continual progress because suboptimal decisions made in earlier iter‐
ations of the algorithm can be fixed without having to undo all past history.
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Example 8-1. Sample Java Ford–Fulkerson implementation

public class FordFulkerson {
  FlowNetwork network;    /** Represents the FlowNetwork problem. */
  Search searchMethod;    /** Search method to use. */

  // Construct instance to compute maximum flow across given
  // network using given search method to find augmenting path.
  public FordFulkerson (FlowNetwork network, Search method) {
    this.network = network;
    this.searchMethod = method;
  }

  // Compute maximal flow for the flow network. Results of the
  // computation are stored within the flow network object.
  public boolean compute () {
    boolean augmented = false;
    while (searchMethod.findAugmentingPath (network.vertices)) {
      processPath (network.vertices);
      augmented = true;
    }
    return augmented;
  }

  // Find edge in augmenting path with lowest potential to be increased
  // and augment flows within path from source to sink by that amount.
  protected void processPath (VertexInfo []vertices) {
    int v = network.sinkIndex;
    int delta = Integer.MAX_VALUE;        // goal is to find smallest
    while (v != network.sourceIndex) {
      int u = vertices[v].previous;
      int flow;
      if (vertices[v].forward) {
        // Forward edges can be adjusted by remaining capacity on edge.
        flow = network.edge(u, v).capacity - network.edge(u, v).flow;
      } else {
        // Backward edges can be reduced only by their existing flow.
        flow = network.edge(v, u).flow;
      }
      if (flow < delta) { delta = flow; }   // smaller candidate flow.
      v = u;  // follow reverse path to source
    }

    // Adjust path (forward is added, backward is reduced) with delta.
    v = network.sinkIndex;
    while (v != network.sourceIndex) {
      int u = vertices[v].previous;
      if (vertices[v].forward) {
        network.edge(u, v).flow += delta;
      } else {
        network.edge(v, u).flow -= delta;
      }
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      v = u;  // follow reverse path to source
    }
    Arrays.fill (network.vertices, null);   // reset for next iteration
  }
}

Figure 8-3. Ford–Fulkerson example

Any search method that extends the abstract Search class in Figure 8-5 can be
used to locate an augmenting path. The original description of Ford–Fulkerson
uses Depth-First Search while Edmonds–Karp uses Breadth-First Search (see
Chapter 6).
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Figure 8-4. Modeling information for Ford–Fulkerson

Figure 8-5. Search capability

The flow network example in Figure 8-3 shows the results of using Depth-First
Search to locate an augmenting path; the implementation is listed in Example 8-2.
The path structure contains a stack of vertices during its search. A potential aug‐
menting path is extended by popping a vertex u from the stack and finding an adja‐
cent unvisited vertex v that satisfies one of two constraints: (i) edge (u, v) is a
forward edge with unfilled capacity; (ii) edge (v, u) is a backward edge with flow
that can be reduced. If such a vertex is found, then v is appended to the end of path
and the inner while loop continues. Eventually, the sink vertex t is visited or path
becomes empty, in which case no augmenting path is possible.

Example 8-2. Using Depth-First Search to locate augmenting path

public boolean findAugmentingPath (VertexInfo[] vertices) {
  // Begin potential augmenting path at source.
  vertices[sourceIndex] = new VertexInfo (-1);
  Stack<Integer> path = new Stack<Integer>();
  path.push (sourceIndex);
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  // Process forward edges from u; then try backward edges.
  VertexStructure struct[] = network.getEdgeStructure();
  while (!path.isEmpty()) {
    int u = path.pop();

    // try to make forward progress first...
    Iterator<EdgeInfo> it = struct[u].forward();
    while (it.hasNext()) {
      EdgeInfo ei = it.next();
      int v = ei.end;

      // not yet visited AND has unused capacity? Plan to increase.
      if (vertices[v] == null && ei.capacity > ei.flow) {
        vertices[v] = new VertexInfo (u, FORWARD);

        if (v == sinkIndex) { return true; }  // we have found one!
        path.push (v);
      }
    }

    // try backward edges
    it = struct[u].backward();
    while (it.hasNext()) {
      // try to find an incoming edge into u whose flow can be reduced.
      EdgeInfo rei = it.next();
      int v = rei.start;

      // now try backward edge not yet visited (can't be sink!)
      if (vertices[v] == null && rei.flow > 0) {
        vertices[v] = new VertexInfo (u, BACKWARD);
        path.push (v);
      }
    }
  }

  return false;     // nothing
}

As the path is expanded, the vertices array stores VertexInfo information about
forward and backward edges enable the augmenting path to be traversed within the
processPath method from Example 8-1.

The implementation of the Breadth-First Search alternative, known as Edmonds–
Karp, is shown in Example 8-3. Here the path structure contains a queue of vertices
during its search. The potential augmenting path is expanded by removing a vertex
u from the head of the queue and expanding the queue by appending adjacent
unvisited vertices through which the augmented path may exist. Again, either the
sink vertex t will be visited or path becomes empty (in which case no augmenting
path is possible). Given the same example flow network from Figure 8-3, the four
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augmenting paths located using Breadth-First Search are < s, 1, 3, t >, < s, 1, 4, t >,
< s, 2, 3, t >, and < s, 2, 4, t >. The resulting maximum flow will be the same.

Example 8-3. Using Breadth-First Search to locate augmenting path

public boolean findAugmentingPath (VertexInfo []vertices) {
  // Begin potential augmenting path at source with maximum flow.
  vertices[sourceIndex] = new VertexInfo (-1);
  DoubleLinkedList<Integer> path = new DoubleLinkedList<Integer>();
  path.insert (sourceIndex);

  // Process forward edges out of u; then try backward edges into u.
  VertexStructure struct[] = network.getEdgeStructure();
  while (!path.isEmpty()) {
    int u = path.removeFirst();

    Iterator<EdgeInfo> it = struct[u].forward();    // edges out from u
    while (it.hasNext()) {
      EdgeInfo ei = it.next();
      int v = ei.end;

      // if not yet visited AND has unused capacity? Plan to increase.
      if (vertices[v] == null && ei.capacity > ei.flow) {
        vertices[v] = new VertexInfo (u, FORWARD);
        if (v == sinkIndex) { return true; }  // path is complete.
        path.insert (v);                      // otherwise append to queue
      }
    }

    it = struct[u].backward();                // edges into u
    while (it.hasNext()) {
      // try to find an incoming edge into u whose flow can be reduced.
      EdgeInfo rei = it.next();
      int v = rei.start;

      // Not yet visited (can't be sink!) AND has flow to be decreased?
      if (vertices[v] == null && rei.flow > 0) {
         vertices[v] = new VertexInfo (u, BACKWARD);
         path.insert (v);                    // append to queue
      }
    }
  }

  return false;    // no augmented path located.
}

When Ford–Fulkerson terminates, the vertices in V can be split into two disjoint
sets, S and T (where T = V – S). Note that s ∈ S, whereas t ∈ T. S is computed to be
the set of vertices from V that were visited in the final failed attempt to locate an
augmenting path. The importance of these sets is that the forward edges between S

N
etw

o
rk

Flow
A

lg
o

rithm
s

Maximum Flow | 227



and T comprise a min cut or a bottleneck in the flow network. That is, the capacity
that can flow from S to T is minimized, and the available flow between S and T is
already at full capacity.

Analysis
Ford–Fulkerson terminates because the units of flow are non-negative integers
(Ford–Fulkerson, 1962). The performance of Ford–Fulkerson using Depth-First
Search is O(E*mf) and is based on the final value of the maximum flow, mf. Briefly,
it is possible that each iteration adds only one unit of flow to the augmenting path,
and thus networks with very large capacities might require a great number of itera‐
tions. It is striking that the running time is based not on the problem size (i.e., the
number of vertices or edges) but on the capacities of the edges themselves.

When using Breadth-First Search (identified by name as the Edmonds–Karp var‐
iation), the performance is O(V*E2). Breadth-First Search finds the shortest aug‐
mented path in O(V + E), which is really O(E) because the number of vertices is
smaller than the number of edges in the connected flow network graph. Cormen et
al. (2009) prove that the number of flow augmentations performed is on the order
of O(V*E), leading to the final result that Edmonds–Karp has O(V*E2) perfor‐
mance. Edmonds–Karp often outperforms Ford–Fulkerson by relying on Breadth-
First Search to pursue all potential paths in order of length, rather than potentially
wasting much effort in a depth-first “race” to the sink.

Optimization
Typical implementations of network-flow problems use arrays to store information.
We choose instead to present each algorithm with lists because the code is more
readable and readers can understand how the algorithm works. It is worth consider‐
ing, however, how much performance speedup can be achieved by optimizing the
resulting code; in Chapter 2 we showed a 50% performance improvement in opti‐
mizing the multiplication of n-digit numbers. It is clear that faster code can be writ‐
ten, but it may not be easy to understand or maintain if the problem changes. With
this caution in mind, Example 8-4 contains an optimized Java implementation of
Ford–Fulkerson.

Example 8-4. Optimized Ford–Fulkerson implementation

public class Optimized extends FlowNetwork {
  int[][] capacity;     // Contains all capacities.
  int[][] flow;         // Contains all flows.
  int[] previous;       // Contains predecessor information of path.
  int[] visited;        // Visited during augmenting path search.

  final int QUEUE_SIZE; // Size of queue will never be greater than n.
  final int queue[];    // Use circular queue in implementation.

  // Load up the information
  public Optimized (int n, int s, int t, Iterator<EdgeInfo> edges) {
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    super (n, s, t);

    queue = new int[n];
    QUEUE_SIZE = n;
    capacity = new int[n][n];
    flow = new int[n][n];
    previous = new int[n];
    visited = new int [n];
    // Initially, flow is set to 0. Pull info from input.
    while (edges.hasNext()) {
      EdgeInfo ei = edges.next();
      capacity[ei.start][ei.end] = ei.capacity;
    }
  }

  // Compute and return the maxFlow.
  public int compute (int source, int sink) {
    int maxFlow = 0;
    while (search(source, sink)) { maxFlow += processPath (source, sink); }
    return maxFlow;
  }

  // Augment flow within network along path found from source to sink.
  protected int processPath (int source, int sink) {
    // Determine amount by which to increment the flow. Equal to
    // minimum over the computed path from sink to source.
    int increment = Integer.MAX_VALUE;
    int v = sink;
    while (previous[v] != −1) {
      int unit = capacity[previous[v]][v] - flow[previous[v]][v];
      if (unit < increment) { increment = unit; }
      v = previous[v];
    }

    // push minimal increment over the path
    v = sink;
    while (previous[v] != −1) {
      flow[previous[v]][v] += increment;  // forward edges.
      flow[v][previous[v]] -= increment;  // don't forget back edges
      v = previous[v];
    }

    return increment;
  }

  // Locate augmenting path in the Flow Network from source to sink.
  public boolean search (int source, int sink) {
    // clear visiting status. 0=clear, 1=actively in queue, 2=visited
    for (int i = 0 ; i < numVertices; i++) { visited[i] = 0; }

    // create circular queue to process search elements.
    queue[0] = source;
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    int head = 0, tail = 1;
    previous[source] = −1;      // make sure we terminate here.
    visited[source] = 1;        // actively in queue.
    while (head != tail) {
      int u = queue[head]; head = (head + 1) % QUEUE_SIZE;
      visited[u] = 2;

      // add to queue unvisited neighbors of u with enough capacity.
      for (int v = 0; v < numVertices; v++) {
        if (visited[v] == 0 && capacity[u][v] > flow[u][v]) {
          queue[tail] = v;
          tail = (tail + 1) % QUEUE_SIZE;
          visited[v] = 1;       // actively in queue.
          previous[v] = u;
        }
      }
    }

    return visited[sink] != 0;  // did we make it to the sink?
  }
}

Related Algorithms
The Push/Relabel algorithm introduced by Goldberg and Tarjan (1986) improves
the performance to O(V*E*log(V2/E)) and also provides an algorithm that can be
parallelized for greater gains. A variant of the problem, known as the Multi-
Commodity Flow problem, generalizes the Maximum Flow problem stated here.
Briefly, instead of having a single source and sink, consider a shared network used
by multiple sources si and sinks ti to transmit different commodities. The capacity of
the edges is fixed, but the usage demanded for each source and sink may vary. Prac‐
tical applications of algorithms that solve this problem include routing in wireless
networks (Fragouli and Tabet, 2006). Leighton and Rao (1999) have written a
widely cited reference for multicommodity problems.

There are several slight variations to the Maximum Flow problem:

Vertex capacities
What if a flow network places a maximum capacity k(v) flowing through a ver‐
tex v in the graph? We can solve these problems by constructing a modified
flow network Gm as follows. For each vertex v in G, create two vertices va and
vb. Create edge (va, vb) with a flow capacity of k(v). For each incoming edge (u,
v) in G with capacity c(u, v), create a new edge (u, va) with capacity c(u, v). For
each outgoing edge (v, w) in G, create edge (vb, w) in Gm with capacity k(v). A
solution in Gm determines the solution to G.

Undirected edges
What if the flow network G has undirected edges? Construct a modified flow
network Gm with the same set of vertices. For each edge (u, v) in G with
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capacity c(u, v), construct a pair of edges (u, v) and (v, u) each with the same
capacity c(u, v). A solution in Gm determines the solution to G.

Bipartite Matching
Matching problems exist in numerous forms. Consider the following scenario. Five
applicants have been interviewed for five job openings. The applicants have listed
the jobs for which they are qualified. The task is to match applicants to jobs such
that each job opening is assigned to exactly one qualified applicant.

We can use Ford–Fulkerson to solve the Bipartite Matching problem. This techni‐
que is known in computer science as “problem reduction.” We reduce the Bipartite
Matching problem to a Maximum Flow problem in a flow network by showing (a)
how to map the Bipartite Matching problem input into the input for a Maximum
Flow problem, and (b) how to map the output of the Maximum Flow problem into
the output of the Bipartite Matching problem.

Input/Output
A Bipartite Matching problem consists of a set of n elements, where si ∈ S; a set of m
partners, where tj ∈ T; and a set of p acceptable pairs, where pk ∈ P. Each P pair asso‐
ciates an element si ∈ S with a partner tj ∈ T. The sets S and T are disjoint, which
gives this problem its name.

The output is a set of (si, tj) pairs selected from the original set of acceptable pairs, P.
These pairs represent a maximum number of pairs allowed by the matching. The
algorithm guarantees that no greater number of pairs can be matched (although
there may be other arrangements that lead to the same number of pairs).

Solution
Instead of devising a new algorithm to solve this problem, we reduce a Bipartite
Matching problem instance into a Maximum Flow instance. In Bipartite Matching,
selecting the match (si, tj) for element si ∈ S with partner tj ∈ T prevents either si or tj
from being selected again in another pairing. Let n be the size of S and m be the size
of T. To produce this same behavior in a flow network graph, construct G = (V, E):

V contains n + m + 2 vertices
Each element si maps to a vertex numbered i. Each partner tj maps to a vertex
numbered n + j. Create a new source vertex src (labeled 0) and a new target
vertex tgt (labeled n + m + 1).

E contains n + m + k edges
There are n edges connecting the new src vertex to the vertices mapped from S.
There are m edges connecting the new tgt vertex to the vertices mapped from
T. For each of the k pairs, pk = (si, tj), add edge (i, n + j). All of these edges must
have a flow capacity of 1.
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Computing the Maximum Flow in the flow network graph G produces a maximal
matching set for the original Bipartite Matching problem, as proven in Cormen et
al. (2009). For an example, consider Figure 8-6(a), where it is suggested that the two
pairs (a, z) and (b, y) form the maximum number of pairs; the corresponding flow
network using this construction is shown in Figure 8-6(b), where vertex 1 corre‐
sponds to a, vertex 4 corresponds to x, and so on. Upon reflection we can improve
this solution to select three pairs, (a, z), (c, y), and (b, x). The corresponding adjust‐
ment to the flow network is made by finding the augmenting path <0,3,5,2,4,7>.
Applying this augmenting path removes match (b, y) and adds match (b, x) and
(c, y).

Figure 8-6. Bipartite Matching reduces to Maximum Flow

Once the Maximum Flow is determined, we convert the output of the Maximum
Flow problem into the appropriate output for the Bipartite Matching problem. That
is, for every edge (si, tj) whose flow is 1, indicate that the pairing (si, tj) ∈ P is
selected. In the code shown in Example 8-5, error checking has been removed to
simplify the presentation.

Example 8-5. Bipartite Matching using Ford–Fulkerson

public class BipartiteMatching {
  ArrayList<EdgeInfo> edges;  /* Edges for S and T. */
  int ctr = 0;                /* Unique id counter. */

  /* Maps that convert between problem instances. */
  Hashtable<Object,Integer> map = new Hashtable<Object,Integer>();
  Hashtable<Integer,Object> reverse = new Hashtable<Integer,Object>();

  int srcIndex;    /* Source index of flow network problem. */
  int tgtIndex;    /* Target index of flow network problem. */
  int numVertices; /* Number of vertices in flow network problem. */
  public BipartiteMatching (Object[] S, Object[] T, Object[][] pairs) {
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    edges = new ArrayList<EdgeInfo>();

    // Convert pairs into input for FlowNetwork with capacity 1.
    for (int i = 0; i < pairs.length; i++) {
      Integer src = map.get (pairs[i][0]);
      Integer tgt = map.get (pairs[i][1]);
      if (src == null) {
        map.put (pairs[i][0], src = ++ctr);
        reverse.put (src, pairs[i][0]);
      }
      if (tgt == null) {
        map.put (pairs[i][1], tgt = ++ctr);
        reverse.put (tgt, pairs[i][1]);
      }

      edges.add (new EdgeInfo (src, tgt, 1));
    }

    // add extra "source" and extra "target" vertices
    srcIndex = 0;
    tgtIndex = S.length + T.length+1;
    numVertices = tgtIndex+1;
    for (Object o : S) {
      edges.add (new EdgeInfo (0, map.get (o), 1));
    }
    for (Object o : T) {
      edges.add (new EdgeInfo (map.get (o), tgtIndex, 1));
    }
  }

  public Iterator<Pair> compute() {
    FlowNetworkArray network = new FlowNetworkArray (numVertices,
            srcIndex, tgtIndex, edges.iterator());
    FordFulkerson solver = new FordFulkerson (network,
            new DFS_SearchArray(network));
    solver.compute();

    // retrieve from original edgeInfo set; ignore created edges to the
    // added "source" and "target". Only include in solution if flow == 1
    ArrayList<Pair> pairs = new ArrayList<Pair>();
    for (EdgeInfo ei : edges) {
      if (ei.start != srcIndex && ei.end != tgtIndex) {
        if (ei.getFlow() == 1) {
          pairs.add (new Pair (reverse.get (ei.start),
                               reverse.get (ei.end)));
        }
      }
    }

    return pairs.iterator();   // iterator generates solution
  }
}
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Analysis
For a problem reduction to be efficient, it must be possible to efficiently map both
the problem instance and the computed solutions. The Bipartite Matching problem
M = (S, T, P) is converted into a graph G = (V, E) in n + m + k steps. The resulting
graph G has n + m + 2 vertices and n + m + k edges, and thus the size of the graph is
only a constant size larger than the original Bipartite Matching problem size. This
important feature of the construction ensures we have an efficient solution to the
Bipartite Matching problem. After Ford–Fulkerson computes the maximum flow,
the edges in the network with a flow of 1 correspond to pairs in the Bipartite Match‐
ing problem that belong to the matching. Determining these edges requires k steps,
or O(k) extra processing, to “read” the solution to Bipartite Matching.

Reflections on Augmenting Paths
The Maximum Flow problem underlies solutions to all the remaining problems dis‐
cussed earlier in this chapter in Figure 8-1. Each requires steps to represent it as a
flow network, after which we can minimize the cost of that flow. If we associate with
each edge (u, v) in the network a cost d(u, v) that reflects the per-unit cost of ship‐
ping a unit over edge (u, v), the goal is to minimize

Σ f(u, v)*d(u, v)

for all edges in the flow network. Now, for Ford–Fulkerson, we stressed the impor‐
tance of finding an augmenting path that could increase the maximum flow through
the network. But what if we modify the search routine to find the least costly aug‐
mentation, if one exists? We have already seen Greedy algorithms (such as Prim’s
Algorithm for building a Minimum Spanning Tree in Chapter 6) that iteratively
select the least costly extension; perhaps such an approach will work here.

To find the least costly augmentation path, we cannot rely strictly on a breadth-first
or a depth-first approach. As we saw with Prim’s Algorithm, we must use a priority
queue to store and compute the distance of each vertex in the flow network from
the source vertex. We essentially compute the costs of shipping an additional unit
from the source vertex to each vertex in the network, and we maintain a priority
queue based on the ongoing computation:

1. As the search proceeds, the priority queue stores the ordered set of nodes that
define the active searching focus.

2. To expand the search, retrieve from the priority queue the vertex u whose dis‐
tance (in terms of cost) from the source is the smallest. Then locate a neighbor‐
ing vertex v that has not yet been visited and that meets one of two conditions:
either (a) the forward edge (u, v) still has remaining capacity to be increased, or
(b) the backward edge (v, u) has flow that can be reduced.
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3. If the sink index is encountered during the exploration, the search terminates
successfully with an augmenting path; otherwise, no such augmenting path
exists.

The Java implementation of ShortestPathArray is shown in Example 8-6. When
this method returns true, the vertices parameter contains information about the
augmenting path.

Example 8-6. Shortest path (in costs) search for Ford–Fulkerson

public boolean findAugmentingPath (VertexInfo[] vertices) {
  Arrays.fill (vertices, null);   // reset for iteration

  // Construct queue using BinaryHeap. The inqueue[] array avoids
  // an O(n) search to determine if an element is in the queue.
  int n = vertices.length;
  BinaryHeap<Integer> pq = new BinaryHeap<Integer> (n);
  boolean inqueue[] = new boolean [n];

  // initialize dist[] array. Use INT_MAX when edge doesn't exist.
  for (int u = 0; u < n; u++) {
    if (u == sourceIndex) {
      dist[u] = 0;
      pq.insert (sourceIndex, 0);
      inqueue[u] = true;
    } else {
      dist[u] = Integer.MAX_VALUE;
    }
  }

  while (!pq.isEmpty()) {
    int u = pq.smallestID();
    inqueue[u] = false;

    // When reach sinkIndex we are done.
    if (u == sinkIndex) { break; }

    for (int v = 0; v < n; v++) {
      if (v == sourceIndex || v == u) continue;

      // forward edge with remaining capacity if cost is better.
      EdgeInfo cei = info[u][v];
      if (cei != null && cei.flow < cei.capacity) {
        int newDist = dist[u] + cei.cost;
        if (0 <= newDist && newDist < dist[v]) {
          vertices[v] = new VertexInfo (u, Search.FORWARD);
          dist[v] = newDist;
          if (inqueue[v]) {
            pq.decreaseKey (v, newDist);
          } else {
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            pq.insert (v, newDist);
            inqueue[v] = true;
          }
        }
      }

      // backward edge with at least some flow if cost is better.
      cei = info[v][u];
      if (cei != null && cei.flow > 0) {
        int newDist = dist[u] - cei.cost;
        if (0 <= newDist && newDist < dist[v]) {
          vertices[v] = new VertexInfo (u, Search.BACKWARD);
          dist[v] = newDist;
          if (inqueue[v]) {
            pq.decreaseKey (v, newDist);
          } else {
            pq.insert (v, newDist);
            inqueue[v] = true;
          }
        }
      }
    }
  }

  return dist[sinkIndex] != Integer.MAX_VALUE;
}

Armed with this strategy for locating the lowest-cost augmenting path, we can solve
the remaining problems shown in Figure 8-1. To show the effect of this low-cost
search strategy, Figure 8-7 illustrates the side-by-side computation on a small exam‐
ple comparing a straightforward Maximum Flow computation with a Minimum
Cost Flow computation. Each iteration moving vertically down the figure is another
pass through the while loop within the compute() method of Ford–Fulkerson (as
seen in Figure 8-1). The result, at the bottom of the figure, is the maximum flow
found by each approach.

In this example, you are the shipping manager in charge of two factories in Chicago
(v1) and Washington, D.C. (v2) that can each produce 300 widgets daily. You must
ensure that two customers in Houston (v3) and Boston (v4) each receive 300 widgets
a day. You have several options for shipping, as shown in the figure. For example,
between Washington, D.C. and Houston, you may ship up to 280 widgets daily at $4
per widget, but the cost increases to $6 per widget if you ship from Washington,
D.C. to Boston (although you can then send up to 350 widgets per day along that
route).
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Figure 8-7. Side-by-side computation showing difference when considering the
minimum cost flow
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It may not even be clear that Ford–Fulkerson can be used to solve this problem, but
note that we can create a graph G with a new source vertex s0 that connects to the
two factory nodes (v1 and v2), and the two customers (v3 and v4) connect to a new
sink vertex t5. To save space, the source and sink vertices s0 and t5 are omitted. On
the lefthand side of Figure 8-7 we execute the Edmonds–Karp variation to demon‐
strate that we can meet all of our customer needs as requested, at the total daily
shipping cost of $3,600. During each of the four iterations by Ford–Fulkerson, the
impact of the augmented path is shown (when an iteration updates the flow for an
edge, the flow value is shaded gray).

Is this the lowest cost we can achieve? The righthand side of Figure 8-7 shows the
execution of Ford–Fulkerson using ShortestPathArray as its search strategy, as
described in Example 8-6. Note how the first augmented path found takes advantage
of the lowest-cost shipping rate. Also ShortestPathArray only uses the costliest
shipping route from Chicago (v1) to Houston (v3) when there is no other way to
meet the customer needs; when this happens, the augmented path reduces the exist‐
ing flows between Washington, D.C. (v2) and Houston (v3), as well as between
Washington, D.C. (v2) and Boston (v4).

Minimum Cost Flow
To solve a Minimum Cost Flow problem we need only construct a flow network
graph and ensure it satisfies the criteria discussed earlier—capacity constraint, flow
conservation, and skew symmetry—as well as two additional criteria, supply satis‐
faction and demand satisfaction. These terms came into being when the problem
was defined in an economic context, and they roughly correspond to the electical
engineering concepts of a source and a sink:

Supply satisfaction
For each source vertex si ∈ S, the sum of f(si, v) for all edges (si, v) ∈ E (the flow
out of si) minus the sum of f(u, si) for all edges (u, si) ∈ E (the flow into si) must
be less than or equal to sup(si). That is, the supply sup(si) at each source vertex
is a firm upper bound on the net flow from that vertex.

Demand satisfaction
For each sink vertex tj ∈ T, the sum of f(u, tj) for all edges (u, tj) ∈ E (the flow
into tj) minus the sum of f(tj, v) for all edges (tj, v) ∈ E (the flow out of tj) must
be less than or equal to dem(tj). That is, the dem(tj) at each target vertex is a
firm upper bound on the net flow into that vertex.

To simplify the algorithmic solution, we further constrain the flow network graph to
have a single source vertex and sink vertex. This can be easily accomplished by tak‐
ing an existing flow network graph with any number of source and sink vertices and
adding two new vertices. First, add a new vertex (which we refer to as s0) to be the
source vertex for the flow network graph, and add edges (s0, si) for all si ∈ S whose
capacity c(s0, si) = sup(si) and whose cost d(s0, si) = 0. Second, add a new vertex
(referred to as tgt, for target) to be the sink vertex for the flow network graph, and

238 | Chapter 8: Network Flow Algorithms



add edges (tj, tgt) for all tj ∈ T whose capacity c(tj, tgt) = dem(tj) and whose cost d(t0,
tj) = 0. As you can see, adding these vertices and edges does not increase the cost of
the network flow, nor do they reduce or increase the final computed flow over the
network.

The supplies sup(si), demands dem(tj), and capacities c(u, v) are all greater than 0.
The shipping cost d(u, v) associated with each edge may be greater than or equal to
zero. When the resulting flow is computed, all f(u, v) values will be greater than or
equal to zero.

We now present the constructions that allow us to solve each of the remaining flow
network problems listed in Figure 8-1. For each problem, we describe how to
reduce the problem to Minimum Cost Flow.

Transshipment
The inputs are:

• m supply stations si, each capable of producing sup(si) units of a commodity

• n demand stations tj, each demanding dem(tj) units of the commodity

• w warehouse stations wk, each capable of receiving and reshipping (known as
“transshipping”) a maximum maxk units of the commodity at the fixed ware‐
house processing cost of wpk per unit

There is a fixed shipping cost of d(i, j) for each unit shipping from supply station si
to demand stations tj, a fixed transshipping cost of ts(i, k) for each unit shipped
from supply station si to warehouse station wk, and a fixed transshipping cost of
ts(k, j) for each unit shipped from warehouse station wk to demand station tj. The
goal is to determine the flow f(i, j) of units from supply station si to demand station
tj that minimizes the overall total cost, which can be concisely defined as:

Total Cost (TC) = Total Shipping Cost (TSC) + Total Transshipping Cost (TTC)

TSC = Σi Σj d(i, j)*f(i, j)

TTC = Σi Σk ts(i, k)*f(i, k) + Σj Σk ts(j, k)*f(j, k)

The goal is to find integer values for f(i, j) ≥ 0 that ensure that TC is a minimum
while meeting all of the supply and demand constraints. Finally, the net flow of
units through a warehouse must be zero, to ensure no units are lost (or added). The
supplies sup(si) and demands dem(ti) are all greater than 0. The shipping costs
d(i, j), ts(i, k), and ts(k, j) may be greater than or equal to zero.
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Solution
We convert the Transshipment problem instance into a Minimum Cost Flow
problem instance (as illustrated in Figure 8-8) by constructing a graph G = (V, E)
such that:

V contains n + m + 2*w + 2 vertices
Each supply station si maps to a vertex numbered i. Each warehouse wk maps to
two different vertices, one numbered m + 2*k − 1 and one numbered m + 2*k.
Each demand station tj maps to 1 + m + 2*w + j. Create a new source vertex src
(labeled 0) and a new target vertex tgt (labeled n + m + 2*w + 1).

E contains (w + 1)*(m + n) + m*n + w edges
The Transshipment class in the code repository encodes the process for con‐
structing edges for the Transshipment problem instance.

Briefly, the artificial source vertex is connected to the m supply vertices, with zero
cost and capacity equal to the supplier capacity sup(si). These m supply vertices are
each connected to the n demand vertices with cost equal to d(i, j) and infinite
capacity. The n demand vertices are connected to the new artificial target vertex
with zero cost and capacity equal to dem(tj). There are w warehouse nodes, each
connected to the m supply vertices with cost equal to ts(i, k) and capacity equal to
the supplier capacity sup(si); these warehouse nodes are also connected to the n
demand vertices with cost equal to ts(k, j) and capacity equal to the demand
capacity dem(tj). Finally, edges between warehouses have capacities and costs based
on the warehouse limits and costs.

Once the Minimum Cost Flow solution is available, the transshipment schedule can
be constructed by locating those edges (u, v) ∈ E whose f(u, v) > 0. The cost of the
schedule is the sum total of f(u, v)*d(u, v) for these edges.

Transportation
The Transportation problem is simpler than the Transshipment problem because
there are no intermediate warehouse nodes. The inputs are:

• m supply stations si, each capable of producing sup(si) units of a commodity

• n demand stations tj, each demanding dem(tj) units of the commodity

There is a fixed per-unit cost d(i, j) ≥ 0 associated with transporting a unit over the
edge (i, j). The goal is to determine the flow f(i, j) of units from supply stations si to
demand stations tj that minimizes the overall transportation cost, TSC, which can
be concisely defined as:

Total Shipping Cost (TSC) = Σi Σj d(i, j)*f(i, j)
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The solution must also satisfy both the total demand for each demand station tj and
the supply capabilities for supply stations si.

Figure 8-8. Sample Transshipment problem instance converted to Minimum
Cost Flow problem instance

N
etw

o
rk

Flow
A

lg
o

rithm
s

Transportation | 241



Solution
We convert the Transportation problem instance into a Transshipment problem
instance with no intermediate warehouse nodes.

Assignment
The Assignment problem is simply a more restricted version of the Transportation
problem: each supply node must supply only a single unit, and the demand for each
demand node is also one.

Solution
We convert the Assignment problem instance into a Transportation problem
instance, with the restriction that the supply nodes provide a single unit and the
demand nodes require a single unit.

Linear Programming
The different problems described in this chapter can all be solved using Linear Pro‐
gramming (LP), a powerful technique that optimizes a linear objective function,
subject to linear equality and inequality constraints (Bazaraa and Jarvis, 1977).

To show LP in action, we convert the Transportation problem depicted in
Figure 8-8 into a series of linear equations to be solved by an LP solver. We use a
general-purpose commercial mathematics software package known as Maple to
carry out the computations. As you recall, the goal is to maximize the flow over the
network while minimizing the cost. We associate a variable with the flow over each
edge in the network; thus the variable e13 represents f(1,3). The function to be
minimized is Cost, which is defined as the sum total of the shipping costs over each
of the four edges in the network. This cost equation has the same constraints we
described earlier for network flows:

Flow conservation
The sum total of the edges emanating from a source vertex must equal its sup‐
ply. The sum total of the edges entering a demand vertex must be equal to its
demand.

Capacity constraint
The flow over an edge f(i, j) must be greater than or equal to zero. Also, f(i, j) ≤
c(i, j).

When executing the Maple solver, the computed result is {e13 = 100, e24 = 100, e23
= 200, e14 = 200}, which corresponds exactly to the minimum cost solution of 3,300
found earlier (see Example 8-7).
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Example 8-7. Maple commands to apply minimization to Transportation
problem

Constraints := [
# conservation of units at each node
e13+e14    = 300,  # CHI
e23+e24    = 300,  # DC

e13+e23    = 300,  # HOU
e14+e24    = 300,  # BOS

# maximum flow on individual edges
0 <= e13, e13 <= 200,
0 <= e14, e14 <= 200,
0 <= e23, e23 <= 280,
0 <= e24, e24 <= 350
];

Cost := 7*e13 + 6*e14 + 4*e23 + 6*e24;

# Invoke linear programming to solve problem
minimize (Cost, Constraints, NONNEGATIVE);

The Simplex algorithm designed by George Dantzig in 1947 makes it possible to
solve problems such as those shown in Example 8-7, which involve hundreds or
thousands of variables (McCall, 1982). Simplex has repeatedly been shown to be
efficient in practice, although the approach can, under unfortunate circumstances,
lead to an exponential number of computations. It is not recommended that you
implement the Simplex algorithm yourself, both because of its complexity and
because there are commercially available software libraries that do the job for you.
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9
Computational Geometry

Computational geometry is the rigorous application of mathematics to compute
geometric structures and their properties accurately and efficiently. We confine our
discussion to solve problems involving two-dimensional structures represented in
the Cartesian plane; there are natural extensions to n-dimensional structures. Math‐
ematicians have investigated such problems for centuries, but the field has been
recognized as a systematic study since the 1970s. This chapter presents the compu‐
tational abstractions used to solve computational geometry problems. These techni‐
ques are by no means limited to geometry problems and have many real-world
applications.

Algorithms in this category solve numerous real-world problems:

Convex hull
Compute the smallest convex shape that fully encloses a set of n two-
dimensional points, P. This can be solved in O(n log n) instead of an O(n4)
brute-force solution.

Intersecting line segments
Compute all intersections given a set of n two-dimensional line segments, S.
This can be solved in O((n + k) log n) where k is the number of intersections,
instead of an O(n2) brute-force solution.

Voronoi diagram
Partition a plane into regions based on distance to a set of n two-dimensional
points, P. Each of the n regions consists of the Cartesian points closer to point
pi ∈ P than any other pj ∈ P. This can be solved in O(n log n).

Along the way we describe the powerful Line Sweep technique that can be used, ulti‐
mately, to solve all three of these problems.
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Classifying Problems
A computational geometry problem inherently involves geometric objects, such as
points, lines, and polygons. It is defined by the type of input data to be processed,
the computation to be performed, and whether the task is static or dynamic.

Input Data
A computational geometry problem must define the input data. The following are
the most common types of input data to be processed:

• Points in the two-dimensional plane
• Line segments in the plane
• Rectangles in the plane
• Polygons in the plane

Two-dimensional structures (lines, rectangles, and circles) have three-dimensional
counterparts (planes, cubes, and spheres) and even n-dimensional counterparts
(such as hyperplanes, hypercubes, and hyperspheres). Examples involving higher
dimensions include:

Matching
Using their Compatibility Matching System (U.S. Patent No. 6,735,568), the
eHarmony matchmaking service predicts the long-term compatibility between
two people. All users of the system (estimated to be 66 million in 2015) fill out
a 258-question Relationship Questionnaire. eHarmony then determines close‐
ness of match between two people based on 29-dimensional data.

Data imputation
An input file contains 14 million records, where each record has multiple fields
with text or numeric values. Some of these values are suspected to be wrong or
missing. We can infer or impute “corrections” for the suspicious (or even miss‐
ing) values by finding other records “close to” the suspect records.

This chapter describes a set of core interfaces for computational geometry and
introduces classes that realize these interfaces. All algorithms are coded against
these interfaces for maximum interoperability:

IPoint

Represents a Cartesian point (x,y) using double floating-point accuracy. Imple‐
mentations provide a default comparator that sorts by x, from left to right, and
breaks ties by sorting y, from bottom to top.

IRectangle
Represents a rectangle in Cartesian space. Implementations determine whether
it contains an IPoint or an entire IRectangle.
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ILineSegment
Represents a finite line segment in Cartesian space with a fixed start and end
point. In “normal position,” the start point will have a higher y coordinate than
the end point, except for horizontal lines (in which case the leftmost end point
is designated as the start point). Implementations can determine intersections
with other ILineSegment or IPoint objects and whether an IPoint object is on
its left or right when considering the orientation of the line from its end point
to its start point.

These concepts naturally extend into multiple dimensions:

IMultiPoint
Represents an n-dimensional point with a fixed number of dimensions, with
each coordinate value using double floating-point accuracy. The class can
determine the distance to another IMultiPoint with the same dimensionality.
It can return an array of coordinate values to optimize the performance of
some algorithms.

IHypercube
Represents an n-dimensional solid shape with [left, right] bounding values for a
fixed number of dimensions. The class can determine whether the hypercube
intersects an IMultiPoint or contains an IHypercube with the same dimen‐
sionality.

Each of these interface types is realized by a set of concrete classes used to instanti‐
ate the actual objects (e.g., the class TwoDPoint realizes both the IPoint and IMulti
Point interfaces).

Point values are traditionally real numbers that force an implementation to use
floating-point primitive types to store data. In the 1970s, computations over
floating-point values were relatively costly compared to integer arithmetic, but now
this is no longer an obstacle to performance. Chapter 2 discusses important issues
relating to floating-point computations, such as round-off error, that have an impact
on the algorithms in this chapter.

Computation
There are three general tasks in computational geometry that are typically related to
spatial questions, such as those shown in Table 9-1:

Query
Select existing elements within the input set based on a set of desired con‐
straints (e.g., contained within, closest, or furthest); these tasks are most
directly related to the search algorithms discussed in Chapter 5 and will be cov‐
ered in Chapter 10. C

o
m

p
utatio

nal
G

eo
m

etry

Classifying Problems | 247



Computation
Perform a series of calculations over the input set (e.g., line segments) to pro‐
duce geometric structures that incorporate elements from the input set (e.g.,
intersections over these line segments).

Preprocessing
Embed the input set in a rich data structure to be used to answer a set of ques‐
tions. In other words, the result of the preprocessing task is used as input for a
set of other questions.

Table 9-1. Computational geometry problems and their applications

Computational geometry problem(s) Real-world application(s)

Find the closest point to a given point. Given a car’s location, find the closest gasoline station.

Find the furthest point from a given point. Given an ambulance station, find the furthest hospital
from a given set of facilities to determine worst-case
travel time.

Determine whether a polygon is simple (i.e., two
nonconsecutive edges cannot share a point).

An animal from an endangered species has been tagged
with a radio transmitter that emits the animal’s location.
Scientists would like to know when the animal crosses its
own path to find commonly used trails.

Compute the smallest circle enclosing a set of
points. Compute the largest interior circle of a set
of points that doesn’t contain a point.

Statisticians analyze data using various techniques.
Enclosing circles can identify clusters, whereas large gaps
in data suggest anomalous or missing data.

Determine the full set of intersections within a set
of line segments, or within a set of circles,
rectangles, or arbitrary polygons.

Very Large Scale Integration (VLSI) design rule checking.

Nature of the Task
A static task requires only that an answer be delivered on demand for a specific
input data set. However, two dynamic considerations alter the way a problem might
be approached:

• If multiple tasks are requested on a single input data set, preprocess the input
set to improve the efficiency of each task

• If the input data set changes, investigate data structures that gracefully enable
insertions and deletions

Dynamic tasks require data structures that can grow and shrink as demanded by
changes to the input set. Arrays of fixed length might be suitable for static tasks, but
dynamic tasks require the creation of linked lists or stacks of information to serve a
common purpose.

248 | Chapter 9: Computational Geometry



Assumptions
For most computational geometry problems, an efficient solution starts by analyz‐
ing the assumptions and invariants about the input set (or the task to be per‐
formed). For example:

• Given an input set of line segments, can there be horizontal or vertical seg‐
ments?

• Given a set of points, are any three of its points collinear? In other words, do
they exist on the same mathematical line in the plane? If not, the points are said
to be in general position, which means algorithms don’t have to handle any spe‐
cial case involving collinear points.

• Does the input set contain a uniform distribution of points? Or is it skewed or
clustered in a way that could force an algorithm into its worst-case behavior?

Most of the algorithms presented in this chapter have unusual boundary cases that
are challenging to implement; we describe these situations in the code examples.

Convex Hull
Given a set of two-dimensional points P, the convex hull is the smallest convex
shape that fully encloses all points in P (i.e., a line segment drawn between any two
points within the hull lies totally within it). The hull is formed by computing a
clockwise ordering of h points from P, which are labeled L0, L1,…,Lh-1. Although any
point can be the first (L0), algorithms typically use the leftmost point in the set P; in
other words, the one with the smallest x coordinate. If multiple such points exist in
P, choose the one with the smallest y coordinate.

Given n points, there are C(n, 3) or n*(n – 1)*(n – 2)/6 different possible triangles.
Point pi ∈ P cannot be part of the convex hull if it is contained within a triangle
formed by three other distinct points in P. For example, in Figure 9-1, point p6 can
be eliminated by the triangle formed by points p4, p7, and p8. For each of these trian‐
gles Ti, a brute-force Slow Hull algorithm could eliminate any of the n − 3 remain‐
ing points from the convex hull if they exist within Ti.

Once the hull points are known, the algorithm labels the leftmost point L0 and sorts
all other points by the angle formed with a vertical line through L0. Each sequence
of three hull points Li, Li+1, Li+2 creates a right turn (note that this property holds for
Lh−2, Lh−1, L0 as well).

This inefficient approach requires O(n4) individual executions of the triangle detec‐
tion step. We now present an efficient Convex Hull Scan algorithm that computes
the convex hull in O(n log n). C
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Figure 9-1. Sample set of points in plane with its convex hull drawn

Convex Hull Scan
Convex Hull Scan, invented by Andrew (1979), divides the problem by construct‐
ing a partial upper hull and a partial lower hull and then combining them. First, all
points are sorted by their x coordinate (breaking ties by considering y). The partial
upper hull starts with the leftmost two points in P. Convex Hull Scan extends the
partial upper hull by finding the point p ∈ P whose x coordinate comes next in sor‐
ted order after the partial upper hull’s last point Li. Computing the lower hull is sim‐
ilar; to produce the final results, join the partial results together by their end points.

If the three points Li−1, Li and the candidate point p form a right turn, Convex Hull
Scan extends the partial hull to include p. This decision is equivalent to computing
the determinant of the 3×3 matrix shown in Figure 9-2, which represents the cross
product cp. If cp < 0, then the three points determine a right turn and Convex Hull
Scan continues on. If cp = 0 (the three points are collinear) or if cp > 0 (the three
points determine a left turn), then the middle point Li must be removed from the
partial hull to retain its convex property. Convex Hull Scan computes the convex
upper hull by processing all points up to the rightmost point. The lower hull is simi‐
larly computed (this time by choosing points in decreasing x coordinate value), and
the two partial hulls are joined together.
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Figure 9-2. Computing determinant decides whether points form right turn

Convex Hull Scan Summary
Best, Average, Worst: O(n log n)

convexHull (P)

  sort P ascending by x coordinate (break ties by sorting y) 
  if n < 3 then return P

  upper = {p0, p1} 
  for i = 2 to n-1 do
    append pi to upper

    while last three in upper make left turn do 

      remove middle of last three in upper 

  lower = {pn-1, pn-2} 
  for i = n-3 downto 0 do
    append pi to lower
    while last three in lower make left turn do
      remove middle of last three in lower

  join upper and lower (remove duplicate end points) 
  return computed hull

Sorting points is the largest cost for this algorithm.

Propose these two points as being on the upper hull.

A left turn means the last three hull points form a nonconvex angle.

Middle point was wrong choice so remove.

Similar procedure computes lower hull.

Stitch these together to form the convex hull.

Figure 9-3 shows Convex Hull Scan in action as it computes the partial upper hull.
Note that the overall approach makes numerous mistakes as it visits every point in P
from left to right, yet it adjusts by dropping—sometimes repeatedly—the middle of
the last three points while it correctly computes the upper partial hull.
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Figure 9-3. Incremental construction of upper partial convex hull

Input/Output
The input is a set of two-dimensional points P in a plane.

Convex Hull Scan computes an ordered list L containing the h vertices of the con‐
vex hull of P in clockwise order. The convex hull is a polygon defined by the points
L0, L1,…, Lh−1, where h is the number of points in L. Note that the polygon is formed
from the h line segments <L0, L1>, <L1, L2>,…, <Lh−1, L0>.

To avoid trivial solutions, we assume |P| ≥ 3. No two points are “too close” to each
other (as determined by the implementation). If two points are too close to each
other and one of those points is on the convex hull, Convex Hull Scan might incor‐
rectly select an invalid convex hull point (or discard a valid convex hull point); how‐
ever, the difference would be negligible.

Context
Convex Hull Scan requires only primitive operations (such as multiply and divide),
making it easier to implement than GrahamScan (Graham, 1972), which uses trigo‐
nometric identities as demonstrated in Chapter 3. Convex Hull Scan can support a
large number of points because it is not recursive.

The fastest implementation occurs if the input set is uniformly distributed and thus
can be sorted in O(n) using Bucket Sort, because the resulting performance would
also be O(n). Without such information, we choose Heap Sort to achieve O(n log n)
behavior for sorting the initial points. The supporting code repository contains each
of the described implementations that we benchmark for performance.
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Solution
Example 9-1 shows how Convex Hull Scan first computes the partial upper hull
before reversing direction and computing the partial lower hull. The final convex
hull is the combination of the two partial hulls.

Example 9-1. Convex Hull Scan solution to convex hull

public class ConvexHullScan implements IConvexHull {
  public IPoint [] compute (IPoint[] points) {
    // sort by x coordinate (and if ==, by y coordinate).
    int n = points.length;
    new HeapSort<IPoint>().sort (points, 0, n-1, IPoint.xy_sorter);
    if (n < 3) { return points; }

    // Compute upper hull by starting with leftmost two points
    PartialHull upper = new PartialHull (points[0], points[1]);
    for (int i = 2; i < n; i++) {
      upper.add (points[i]);
      while (upper.hasThree() && upper.areLastThreeNonRight()) {
        upper.removeMiddleOfLastThree();
      }
    }

    // Compute lower hull by starting with rightmost two points
    PartialHull lower = new PartialHull (points[n-1], points[n-2]);
    for (int i = n-3; i >= 0; i--) {
      lower.add (points[i]);
      while (lower.hasThree() && lower.areLastThreeNonRight()) {
        lower.removeMiddleOfLastThree();
      }
    }

    // remove duplicate end points when combining.
    IPoint[] hull = new IPoint[upper.size()+lower.size()-2];
    System.arraycopy (upper.getPoints(), 0, hull, 0, upper.size());
    System.arraycopy (lower.getPoints(), 1, hull,
                      upper.size(), lower.size()-2);
    return hull;
  }
}

Because the first step of this algorithm must sort the points, we rely on Heap Sort
to achieve the best average performance without suffering from the worst-case
behavior of Quicksort. However, in the average case, Quicksort will outperform
Heap Sort.

The Akl-Toussaint heuristic (1978) can noticeably improve the performance of the
overall algorithm by discarding all points that exist within the extreme quadrilateral
(the minimum and maximum points along both the x and y axes) computed from
the initial set P. Figure 9-4 shows the extreme quadrilateral for the sample points
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from Figure 9-1. The discarded points are shown in gray; none of these points can
belong to the convex hull.

Figure 9-4. The Akl-Toussaint heuristic at work

To determine whether a point p is within the extreme quadrilateral, imagine a line
segment s from p to an extreme point at (p.x, –∞), and count the number of times s
intersects the four line segments of the quadrilateral; if the count is 1, p is inside and
can be eliminated. The implementation handles special cases, such as when line seg‐
ment s exactly intersects one of the end points of the extreme quadrilateral. This
computation requires a fixed number of steps, so it is O(1), which means applying
the Akl-Toussaint heuristic to all points is O(n). For large random samples, this
heuristic can remove nearly half the initial points, and because these points are dis‐
carded before the sort operation, the costly sorting step in the algorithm is reduced.

Analysis
We ran a set of 100 trials on randomly generated two-dimensional points from the
unit square, and the best and worst trials were discarded. Table 9-2 shows the aver‐
age performance results of the remaining 98 trials. The table also shows the break‐
down of average times to perform the heuristic plus some information about the
solution that explains why Convex Hull Scan is so efficient.

As the size of the input set increases, nearly half of its points can be removed by the
Akl-Toussaint heuristic. More surprising, perhaps, is the low number of points on
the convex hull. The second column in Table 9-2 validates the claim by Preparata
and Shamos (1985) that the number of points on the convex hull should be O(log n).
Naturally, the distribution matters: if you choose points uniformly from a unit cir‐
cle, for example, the convex hull contains on the order of the cube root of n points.
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Table 9-2. Example showing running times (in milliseconds) and applied Akl-
Toussaint heuristic

n Average
number of
points on hull

Average time
to compute

Average number
of points
removed by
heuristic

Average time to
compute
heuristic

Average time to
compute with
heuristic

4,096 21.65 8.95 2,023 1.59 4.46

8,192 24.1 18.98 4,145 2.39 8.59

16,384 25.82 41.44 8,216 6.88 21.71

32,768 27.64 93.46 15,687 14.47 48.92

65,536 28.9 218.24 33,112 33.31 109.74

131,072 32.02 513.03 65,289 76.36 254.92

262,144 33.08 1168.77 129,724 162.94 558.47

524,288 35.09 2617.53 265,982 331.78 1159.72

1,048,576 36.25 5802.36 512,244 694 2524.30

The first step in Convex Hull Scan explains the cost of O(n log n) when the points
are sorted using one of the standard comparison-based sorting techniques described
in Chapter 4. The for loop that computes the upper partial hull processes n − 2
points, the inner while loop cannot execute more than n − 2 times, and the same
logic applies to the loop that computes the lower partial hull. The total time for the
remaining steps of Convex Hull Scan is thus O(n).

Problems with floating-point arithmetic appear when Convex Hull Scan computes
the cross-product calculation. Instead of strictly comparing whether the cross prod‐
uct cp < 0, PartialHull determines whether cp < δ, where δ is 10−9.

Variations
The sorting step of Convex Hull Scan can be eliminated if the points are already
known to be in sorted order; in this case, Convex Hull Scan can perform in O(n).
Alternatively, if the input points are drawn from a uniform distribution, then one
can use Bucket Sort (see “Bucket Sort” in Chapter 4) to also achieve O(n) perfor‐
mance. Another convex hull variation known as QuickHull (Eddy, 1977) uses the
Divide and Conquer strategy inspired by Quicksort to compute the convex hull in
O(n) performance on uniformly distributed points.

There is one final variation to consider. Convex Hull Scan doesn’t actually need a
sorted array when it constructs the partial upper hull; it just needs to iterate over all
points in P in order, from smallest x coordinate to highest x coordinate. This behav‐
ior is exactly what occurs if one constructs a binary heap from the points in P and
repeatedly removes the smallest element from the heap. If the removed points are
stored in a linked list, the points can be simply “read off ” the linked list to process
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the points in reverse order from right to left. The code for this variation (identified
as Heap in Figure 9-5) is available in the code repository accompanying this book.

Figure 9-5. Performance of convex hull variations

The performance results shown in Figure 9-5 were generated from two data set dis‐
tributions:

Circle data
n points distributed evenly over the edge of a unit circle. All points will belong
to the convex hull, so this is an extreme case.

Uniform data
n points distributed evenly from the unit square. As n increases, the majority of
these points will not be part of the convex hull, so this represents another
extreme case.
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We ran a series of trials using data sets with 512 to 131,072 points, the two data set
distributions, the different implementations described in Example 9-1, and the code
repository. We did not employ the Akl-Toussaint heuristic. For each data set size, we
ran 100 trials and discarded the best- and worst-performing runs. The resulting
average time (in milliseconds) of the remaining 98 trials is depicted in Figure 9-5.
The implementation using balanced binary trees shows the best performance of the
approaches that use comparison-based sorting techniques. Note that the implemen‐
tation using Bucket Sort offers the most efficient implementation, but only because
the input set is drawn from a uniform distribution. In the general case, computing a
convex hull can be performed in O(n log n).

However, these implementations also suffer poor performance should the input data
be skewed. Consider n points distributed unevenly with with points (0,0), (1,1) and
n − 2 points clustered in thin slices just to the left of .502. This data set is construc‐
ted to defeat Bucket Sort. Table 9-3 shows how Bucket Sort degenerates into an
O(n2) algorithm because it relies on Insertion Sort to sort its buckets.

The convex hull problem can be extended to three dimensions and higher where the
goal is to compute the bounding polyhedron surrounding the three-dimensional
point space. Unfortunately, in higher dimensions, more complex implementations
are required.

Table 9-3. Timing comparison (in milliseconds) with highly skewed data

n Andrew Heap Balanced Bucket

512 0.28 0.35 0.33 1.01

1024 0.31 0.38 0.41 3.30

2048 0.73 0.81 0.69 13.54

Melkman (1987) developed an algorithm that produces the convex hull for a simple
polyline or polygon in O(n). Quite simply, it avoids the need to sort the initial
points by taking advantage of the ordered arrangement of points in the polygon
itself.

A convex hull can be maintained efficiently using an approach proposed by Over‐
mars and van Leeuwen (1981). The convex hull points are stored in a tree structure
that supports both deletion and insertion of points. The cost of either an insert or
delete is known to be O(log2 n), so the overall cost of constructing the hull becomes
O(n log2 n) while still requiring only O(n) space. This result reinforces the principle
that every performance benefit comes with its own trade-off.

GrahamScan was one of the earliest convex hull algorithms, developed in 1972
using simple trigonometric identities. We described this algorithm in Chapter 3.
Using the determinant computation shown earlier, an appropriate implementation
needs only simple data structures and basic mathematical operations. GrahamScan
computes the convex hull in O(n log n), because it first sorts points by the angles
they make with the point s ∈ P with the smallest y coordinate and the x axis. One
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challenge in completing this sort is that points with the same angle must be ordered
by their distance from s.

Computing Line-Segment Intersections
Given a set of n line segments S in a two-dimensional plane, you might need to
determine the full set of intersection points between all segments. In the example in
Figure 9-6, there are two intersections (shown as small black circles) found in this
set of four line segments. As shown in Example 9-2, a brute-force approach will
compute all C(n,2) or n*(n – 1)/2 intersections of the line segments in S using O(n2)
time. For each pair, the implementation outputs the intersection, if it exists.

Figure 9-6. Three line segments with two intersections

Example 9-2. Brute Force Intersection implementation

public class BruteForceAlgorithm extends IntersectionDetection {
  public Hashtable<IPoint, List<ILineSegment>> intersections
          (ILineSegment[] segments) {
    initialize();
    for (int i = 0; i < segments.length-1; i++) {
      for (int j = i+1; j < segments.length; j++) {
        IPoint p = segments[i].intersection (segments[j]);
        if (p != null) {
          record (p, segments[i], segments[j]);
        }
      }
    }
    return report;
  }
}

This computation requires O(n2) individual intersection computations and may
require complex trigonometric functions.

It is not immediately clear that any improvement over O(n2) is possible, yet this
chapter presents the innovative LineSweep algorithm, which on average shows how
to compute the results in O((n + k) log n) where k represents the number of
reported intersection points.
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LineSweep
There are numerous situations where we must detect intersections between geomet‐
ric shapes. In VLSI chip design, precise circuits are laid out on a circuit board, and
there must be no unplanned intersections. For travel planning, a set of roads could
be stored in a database as line segments whose street intersections are determined
by line-segment intersections.

Figure 9-7 shows an example with seven intersections between six line segments.
Perhaps we don’t have to compare all possible C(n, 2) or n*(n – 1)/2 line-segment
pairs. After all, line segments that are clearly apart from one another (in this exam‐
ple, S1 and S4) cannot intersect. LineSweep is a proven approach that improves effi‐
ciency by focusing on a subset of the input elements as it progresses. Imagine
sweeping a horizontal line L across the input set of line segments from the top to the
bottom and reporting the intersections when they are found by L. Figure 9-7 shows
the state of line L as the sweep occurs from top to bottom (at nine distinct and spe‐
cific locations).

Figure 9-7. Detecting seven intersections for six line segments

The innovation of LineSweep is in recognizing that line segments can be ordered
from left to right at a specific y coordinate. Horizontal segments are addressed by
considering the left end point to be “higher” than the right end point. Line-segment
intersections can then occur only between neighboring segments in the state of the
sweep line. Specifically, for two line segments si and sj to intersect, there must be
some time during the line sweep when they are neighbors. LineSweep can effi‐
ciently locate intersections by maintaining this line state.

Looking closer at the nine selected locations of the horizontal sweep line in
Figure 9-7, you will see that each occurs at (i) the start or end of a line segment, or
(ii) an intersection. LineSweep doesn’t actually “sweep” a line across the Cartesian
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plane; rather, it inserts the 2*n segment end points into an event queue, which is a
modified priority queue. All intersections involving start and end points of existing
line segments can be detected when processing these points. LineSweep processes
the queue to build up the state of the sweep line L to determine when neighboring
line segments intersect.

Input/Output
LineSweep processes a set of n line segments S in the Cartesian plane. There can be
no duplicate segments in S. No two line segments in S are collinear (i.e., overlap
each other and have the same slope). The algorithm supports both horizontal and
vertical line segments by carefully performing computations and ordering segments
appropriately. No line segment should be a single point (i.e., a line segment whose
start and end point are the same).

The output contains the k points representing the intersections (if any exist)
between these line segments and, for each of these k points, pi, the actual line seg‐
ments from S that intersect at pi.

Context
When the expected number of intersections is much smaller than the number of
line segments, this algorithm handily outperforms a brute-force approach. When
there are a significant number of intersections, the bookkeeping of the algorithm
may outweigh its benefits.

A sweep-based approach is useful when you can (a) efficiently construct the line
state, and (b) manage the event queue that defines when the sweep line is inter‐
preted. There are numerous special cases to consider within the LineSweep imple‐
mentation, and the resulting code is much more complex than the brute-force
approach, whose worst-case performance is O(n2). Choose this algorithm because of
the expected performance savings and improved worst-case behavior.

LineSweep produces partial results incrementally until the entire input set has been
processed and all output results are produced. In the example here, the line state is a
balanced binary tree of line segments, which is possible because we can impose an
ordering on the segments at the sweep line. The event queue can also simply be a
balanced binary tree of event points sorted lexicographically, meaning that points
with a higher y value appear first (because the sweep line moves down the Cartesian
plane from top to bottom); if there are two points with the same y value, the one
with the lower x value appears first.

To simplify the coding of the algorithm, the binary tree used to store the line state is
an augmented balanced binary tree in which only the leaf nodes contain actual
information. The interior nodes store min and max information about the leftmost
segment in the left subtree and rightmost segment in the right subtree. The ordering
of segments within the tree is made based on the sweep point, the current
EventPoint being processed from the priority queue.
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LineSweep Summary
Best, Average, Worst: O((n + k) log n)

intersection (S)
  EQ = new EventQueue

  foreach s in S do 
    ep = find s.start in EQ or create new one and insert into EQ

    add s to ep.upperLineSegments 

    ep = find s.end in EQ or create new one and insert into EQ
    add s to ep.lowerLineSegments

  state = new lineState
  while EQ is not empty do
    handleEvent (EQ, state, getMin(EQ))
end

handleEvent (EQ, state, ep)
  left = segment in state to left of ep
  right = segment in state to right of ep

  compute intersections in state between left to right 

  remove segments in state between left and right
  advance state sweep point down to ep

  if new segments start at ep then 
    insert new segments into state
    update = true

  if intersections associated with ep then 
    insert intersections into state
    update = true
  if update then
    updateQueue (EQ, left, left successor)
    updateQueue (EQ, right, right predecessor)
  else
    updateQueue (EQ, left, right)
end

updateQueue (EQ, A, B) 
  if neighboring A and B segments intersect below sweep point then
    insert their intersection point into EQ
end

Initialize event queue with up to 2*n points.

Event points refer to segments (upper or lower end points).

Any intersection occurs between neighboring line segments.

Maintain line state as new segments are discovered below sweep line.
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At an intersection, neighboring line segments switch relative position.

Add intersection to event queue only if below sweep line.

Solution
The solution described in Example 9-3 depends on the EventPoint, EventQueue,
and LineState classes found in the code repository.

Example 9-3. LineSweep Java implementation

public class LineSweep extends IntersectionDetection {
  // Store line sweep state and event queue
  LineState lineState = new LineState();
  EventQueue eq = new EventQueue();

  /** Compute intersection of all segments from array of segments. */
  public Hashtable<IPoint,ILineSegment[]> intersections (
          ILineSegment[] segs) {
    // Construct Event Queue from segments. Ensure only unique
    // points appear by combining all information as it is discovered.
    for (ILineSegment ils : segs) {
      EventPoint ep = new EventPoint (ils.getStart());
      EventPoint existing = eq.event (ep);
      if (existing == null) { eq.insert (ep); } else { ep = existing; }

      // add upper line segments to ep (the object in the queue)
      ep.addUpperLineSegment (ils);

      ep = new EventPoint (ils.getEnd());
      existing = eq.event (ep);
      if (existing == null) { eq.insert (ep); } else { ep = existing; }

      // add lower line segments to ep (the object in the queue)
      ep.addLowerLineSegment (ils);
    }

    // Sweep top to bottom, processing each Event Point in the queue.
    while (!eq.isEmpty()) {
      EventPoint p = eq.min();
      handleEventPoint (p);
    }

    // return report of all computed intersections
    return report;
  }

  // Process events by updating line state and reporting intersections.
  private void handleEventPoint (EventPoint ep) {
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    // Find segments, if they exist, to left (and right) of ep in
    // linestate. Intersections can happen only between neighboring
    // segments. Start with nearest ones because as line sweeps down
    // we will find any other intersections that (for now) we put off.
    AugmentedNode<ILineSegment> left = lineState.leftNeighbor (ep);
    AugmentedNode<ILineSegment> right = lineState.rightNeighbor (ep);

    // determine intersections 'ints' from neighboring line segments and
    // get upper segments 'ups' and lower segments 'lows' for this event
    // point. An intersection exists if > 1 segment is associated with
    // event point.
    lineState.determineIntersecting (ep, left, right);
    List<ILineSegment> ints = ep.intersectingSegments();
    List<ILineSegment> ups = ep.upperEndpointSegments();
    List<ILineSegment> lows = ep.lowerEndpointSegments();
    if (lows.size() + ups.size() + ints.size() > 1) {
      record (ep.point, new List[] { lows, ups, ints } );
    }

    // Delete everything after left until left's successor is right.
    // Then update the sweep point, so insertions will be ordered. Only
    // ups and ints are inserted because they are still active.
    lineState.deleteRange (left, right);
    lineState.setSweepPoint (ep.point);
    boolean update = false;
    if (!ups.isEmpty()) {
      lineState.insertSegments (ups);
      update = true;
    }
    if (!ints.isEmpty()) {
      lineState.insertSegments (ints);
      update = true;
    }

   // If state shows no intersections at this event point, see if left
   // and right segments intersect below sweep line, and update event
   // queue properly. Otherwise, if there was an intersection, the order
   // of segments between left & right have switched so we check two
   // specific ranges, namely, left and its (new) successor, and right
   // and its (new) predecessor.
   if (!update) {
     if (left != null && right != null) { updateQueue (left, right); }
   } else {
     if (left != null) { updateQueue (left, lineState.successor (left)); }
     if (right != null) { updateQueue (lineState.pred (right), right); }
   }
  }

  // Any intersections below sweep line are inserted as event points.
  private void updateQueue (AugmentedNode<ILineSegment> left,
                            AugmentedNode<ILineSegment> right) {
    // If two neighboring line segments intersect. make sure that new
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    // intersection point is *below* the sweep line and not added twice.
    IPoint p = left.key().intersection (right.key());
    if (p == null) { return; }
    if (EventPoint.pointSorter.compare (p,lineState.sweepPt) > 0) {
      EventPoint new_ep = new EventPoint (p);
      if (!eq.contains (new_ep)) { eq.insert (new_ep); }
    }
  }
}

When the EventQueue is initialized with up to 2*n EventPoint objects, each stores
the ILineSegment objects that start (known as upper segments) and end (known as
lower segments) at the stored IPoint object. When LineSweep discovers an inter‐
section between line segments, an EventPoint representing that intersection is
inserted into the EventQueue as long as it occurs below the sweep line. In this way, no
intersections are missed and none are duplicated. For proper functioning, if this
intersecting event point already exists within the EventQueue, the intersecting infor‐
mation is updated within the queue rather than being inserted twice. It is for this
reason that LineSweep must be able to determine whether the event queue contains
a specific EventPoint object.

In Figure 9-7, when the event point representing the lower point for segment S6
(technically the rightmost end point, because S6 is horizontal) is inserted into the
priority queue, LineSweep only stores S6 as a lower segment; once it is processed, it
will additionally store S4 as an intersecting segment. For a more complex case, when
the event point representing the intersection of segments S2 and S5 is inserted into
the priority queue, it stores no additional information. But after this event point is
processed, it will store segments S6, S2, and S5 as intersecting segments.

The computational engine of LineSweep is the LineState class, which maintains
the current sweep point as it sweeps from the top of the Cartesian plane downward.
When the minimum entry is extracted from the EventQueue, the provided point
Sorter comparator properly returns the EventPoint objects from top to bottom
and left to right.

The true work of LineSweep occurs in the determineIntersecting method of
LineState: the intersections are determined by iterating over those segments
between left and right. Full details on these supporting classes are found in the
code repository.

LineSweep achieves O((n + k) log n) performance because it can reorder the active
line segments when the sweep point is advanced. If this step requires more than
O(log s) for its operations, where s is the number of segments in the state, the per‐
formance of the overall algorithm will degenerate to O(n2). For example, if the line
state was stored simply as a doubly linked list (a useful structure to rapidly find
predecessor and successor segments), the insert operation would increase to require
O(s) time to properly locate the segment in the list, and as the set s of line segments
increases, the performance degradation would soon become noticeable.
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Similarly, the event queue must support an efficient operation to determine whether
an event point is already present in the queue. Using a heap-based priority queue
implementation—as provided by java.util.PriorityQueue, for example—also
forces the algorithm to degenerate to O(n2). Beware of code that claims to imple‐
ment an O(n log n) algorithm but instead produces an O(n2) implementation!

Analysis
LineSweep inserts up to 2*n segment end points into an event queue, a modified
priority queue that supports the following operations in time O(log q), where q is
the number of elements in the queue:

min
Remove the minimum element from the queue.

insert (e)
Insert e into its proper location within the ordered queue.

member (e)
Determine whether e is a member of the queue. This operation is not strictly
required of a generic priority queue.

Only unique points appear in the event queue—in other words, if the same event
point is re-inserted, its information is combined with the event point already in the
queue. Thus, when the points from Figure 9-7 are initially inserted, the event queue
contains only eight event points.

LineSweep sweeps from top to bottom and updates the line state by adding and
deleting segments in their proper order. In Figure 9-7, the ordered line state reflects
the line segments that intersect the sweep line, from left to right, after processing the
event point. To properly compute intersections, LineSweep determines the segment
in the state to the left of (or right of) a given segment si. LineSweep uses an
augmented balanced binary tree to process all of the following operations in time
O(log t), where t is the number of elements in the tree:

insert (s)
Insert line segment s into the tree.

delete (s)
Delete segment s from the tree.

previous (s)
Return segment immediately before s in the ordering, if one exists.

successor (s)
Return segment immediately after s in the ordering, if one exists.

To properly maintain the ordering of segments, LineSweep swaps the order of seg‐
ments when a sweep detects an intersection between segments si and sj; fortunately,
this too can be performed in O(log t) time simply by updating the sweep line point
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and then deleting and reinserting the line segments si and sj. In Figure 9-7, for
example, this swap occurs when the third intersection (6.66, 6.33) is found.

The initialization phase of the algorithm constructs a priority queue from the 2*n
points (start and end) in the input set of n lines. The event queue must additionally
be able to determine whether a new point p already exists within the queue; for this
reason, we cannot simply use a heap to store the event queue, as is commonly done
with priority queues. Since the queue is ordered, we must define an ordering of two-
dimensional points. Point p1 < p2 if p1.y > p2.y; however, if p1.y = p2.y, then p1 < p2 if
p1.x < p2.x. The size of the queue will never be larger than 2*n + k, where k is the
number of intersections and n is the number of input line segments.

All intersection points detected by LineSweep below the sweep line are added to the
event queue, where they will be processed to swap the order of intersecting seg‐
ments when the sweep line finally reaches the intersection point. Note that all inter‐
sections between neighboring segments will be found below the sweep line, and no
intersection point will be missed.

As LineSweep processes each event point, line segments are added to the state when
an upper end point is visited, and removed when a lower end point is visited. Thus,
the line state will never store more than n line segments. The operations that probe
the line state can be performed in O(log n) time, and because there are never more
than O(n + k) operations over the state, our cost is O((n + k) log (n + k)). Because k
is no larger than C(n, 2) or n*(n – 1)/2, performance is O((n + k) log n), which
becomes O(n2 log n) in the worst case.

The performance of LineSweep is dependent on complex properties of the
input (i.e., the total number of intersections and the average number of line seg‐
ments maintained by the sweep line at any given moment). We can benchmark its
performance given a specific problem and input data. We’ll discuss two such prob‐
lems now.

An interesting problem from mathematics is how to compute an approximate value
of π using just a set of toothpicks and a piece of paper (known as Buffon’s needle
problem). If the toothpicks all are len units long, draw a set of vertical lines on the
paper d units apart from one another where d ≥ len. Randomly toss n toothpicks on
the paper and let k be the number of intersections with the vertical lines. It turns out
that the probability that a toothpick intersects a line (which can be computed as k/n)
is equal to (2*len)/(π*d).

When the number of intersections is much less than n2, the brute-force approach
wastes time checking lines that don’t intersect (as shown in Table 9-4). When there
are many intersections, the determining factor will be the average number of line
segments maintained by LineState during the duration of LineSweep. When it is
low (as might be expected with random line segments in the plane), LineSweep will
be the winner.
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Table 9-4. Timing comparison (in milliseconds) between algorithms on
Buffon’s needle problem

n LineSweep Brute
force

Average
number of
intersections

Estimate
for π

± Error

16 1.77 0.18 0.84 3.809524 9.072611

32 0.58 0.1 2.11 3.033175 4.536306

64 0.45 0.23 3.93 3.256997 2.268153

128 0.66 0.59 8.37 3.058542 1.134076

256 1.03 1.58 16.2 3.1644 0.567038

512 1.86 5.05 32.61 3.146896 0.283519

1,024 3.31 18.11 65.32 3.149316 0.14176

2,048 7 67.74 131.54 3.149316 0.07088

4,096 15.19 262.21 266.16 3.142912 0.03544

8,192 34.86 1028.83 544.81 3.12821 0.01772

For the second problem, consider a set S where there are O(n2) intersections among
the line segments. LineSweep will seriously underperform because of the overhead
in maintaining the line state in the face of so many intersections. Table 9-5 shows
how brute force handily outperforms LineSweep, where n is the number of line seg‐
ments whose intersection creates the C(n, 2) or n*(n – 1)/2 intersection points.

Table 9-5. Worst-case comparison of LineSweep versus brute force (in ms)

n LineSweep
(avg)

Brute
force
(avg)

2 0.17 0.03

4 0.66 0.05

8 1.11 0.08

16 0.76 0.15

32 1.49 0.08

64 7.57 0.38

128 45.21 1.43

256 310.86 6.08

512 2252.19 39.36
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Variations
One interesting variation requires only that the algorithm report one of the intersec‐
tion points, rather than all points; this would be useful to detect whether two poly‐
gons intersect. This algorithm requires only O(n log n) time, and may more rapidly
locate the first intersection in the average case. Another variation considers an input
set of red and blue lines where the only desired intersections are those between dif‐
ferent colored line segments (Palazzi and Snoeyink, 1994).

Voronoi Diagram
In 1986, Fortune applied the line-sweep technique to solve another computational
geometry problem, namely, constructing the Voronoi diagram for a set of points, P,
in the Cartesian plane. This diagram is useful in a number of disciplines, ranging
from the life sciences to economics (Aurenhammer, 1991).

A Voronoi diagram partitions a plane into regions based on each region’s distance to
a set of n two-dimensional points, P. Each of the n regions consists of the Cartesian
points closer to point pi ∈ P than any other pj ∈ P. Figure 9-8 shows the computed
Voronoi diagram (black lines) for 13 sample points (shown as squares). The Voro‐
noi diagram consists of 13 convex regions formed from edges (the lines in the fig‐
ure) and vertices (where these lines intersect). Given the Voronoi diagram for a set
of points, you can:

• Compute the convex hull
• Determine the largest empty circle within the points
• Find the nearest neighbor for each point
• Find the two closest points in the set

Fortune Sweep implements a line sweep similar to the one used to detect where line
segments intersect. Recall that a line sweep inserts existing points into a priority
queue and processes those points in order, thus defining a sweep line. The algo‐
rithm maintains a line state that can be updated efficiently to determine the Voronoi
diagram. In Fortune Sweep, the key observation to make is that the sweeping line
divides the plane into three distinct regions, as shown in Figure 9-9.

As the line sweeps down the plane, a partial Voronoi diagram is formed; in
Figure 9-9, the region associated with point p2 is fully computed as a semi-infinite
polygon delimited by four line segments, shown in bold. The sweep line is currently
ready to process point p6 and points p7 through p11 are waiting to be processed. The
line-state structure currently maintains points { p1, p4, p5, and p3 }.

The challenge in understanding Fortune Sweep is that the line state is a complex
structure called a beach line. In Figure 9-9, the beach line is the thin collection of
curved fragments from left to right; the point where two parabolas meet is known as
a breakpoint, and the dashed lines represent partial edges in the Voronoi diagram
that have yet to be confirmed. Each of the points in the beach line state defines a
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parabola with respect to the sweep line. The beach line is defined as the intersection
of these parabolas closest to the sweep line.

Figure 9-8. Sample Voronoi diagram

To explain the structure of the curved segments in the beach line, we need to define
the parabola geometric shape. Given a focus point, f, and a line, L, a parabola is a
symmetric shape composed of the Cartesian points that are equidistant from f and
the line L. The vertex of the parabola, v = (h, k), is the lowest point on the shape. p
represents the distance between L and v as well as the distance between v and f.
Given those variables, the equation 4p(y – k) = (x – h)2 defines the parabola’s struc‐
ture, which is easy to visualize when L is a horizontal line and the parabola opens
upward as shown in Figure 9-10.

The sweep starts at the topmost point in P and sweeps downward, discovering
points known as sites to process. The parabolas in the beach line change shape as the
sweep line moves down, as shown in Figure 9-11, which means that breakpoints
also change their location. Fortunately, the algorithm updates the sweep line only
O(n) times.
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Figure 9-9. Elements of Fortune Sweep

Figure 9-10. Definition of parabola

A vertex in the Voronoi diagram is computed by detecting three points in P that lie
on a circle that doesn’t contain any other points in P. The center of this circle
defines the Voronoi vertex, because that is a point equidistant from the three points.
The three rays that radiate from the center become edges in the Voronoi diagram
because these lines define the points that are equidistant from two points in the col‐
lection. These edges bisect the chord line segments in the circle between the points.
For example, line L3 in Figure 9-12 is perpendicular to the line segment that would
be drawn between (r1, r3).
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Figure 9-11. Parabolas change shape as the sweep line moves down

Figure 9-12. Circle formed by three points
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We now show how Fortune Sweep maintains state information to detect these cir‐
cles. The characteristics of the beach line minimize the number of circles Fortune
Sweep checks; specifically, whenever the beach line is updated, Fortune Sweep
needs to check only the neighboring arcs (to the left and to the right) where the
update occurred. Figure 9-12 shows the mechanics of Fortune Sweep with just
three points. These three points are processed in order from top to bottom, namely,
r1, r2, and r3. A circle is defined once the third point is processed and is known as
the circumcircle of these three points.

Figure 9-13 shows the state of the beach line after processing points r1 and r2. The
beach line is formed by the parabola segments that are closest to the sweep line; in
this case, the state of the sweep line is represented as a binary tree where leaf nodes
declare the associated parabola segment and internal nodes represent breakpoints.
The beach line, from left to right, is formed by three parabolic segments, s1, s2 and
then s1 again, which are drawn from the parabolas associated with points r1, r2 and
then r1 again. The breakpoint s1:s2 represents the x coordinate where to its left,
parabola s1 is closer to the sweep line, and to its right, parabola s2 is closer to the
sweep line. The same characteristics holds for breakpoint s2:s1.

Figure 9-13. Beach line after two points

Figure 9-14 shows when the line-sweep processes the third point, r3. By its location,
a vertical line through r3 intersects the beach line at the rightmost arc, s1, and the
updated beach line state is shown on the right side in Figure 9-14. There are four
nonleaf nodes, representing the four intersections that occur on the beach line
between the three parabolas. There are five leaf nodes, representing the five arc seg‐
ments that form the beach line, from left to right.

Once this beach line is formed, observe that these three points form a circumcircle.
The center of the circle has the potential to become a Voronoi point in the diagram,
but this will happen only if no other point in P is contained within the circle. The
algorithm handles this situation elegantly by creating a circle event, whose coordi‐
nates are the lowest point on this circle (shown in Figure 9-15), and inserting that
event into the event priority queue. Should some other site event be processed
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before this circle event that “gets in the way,” this circle event will be eliminated.
Otherwise, it will be processed in turn and the center point of the circle becomes a
vertex in the Voronoi diagram.

Figure 9-14. Beach line after three points

A key step in this algorithm is the removal of nodes from the beach line state that
can have no other effect on the construction of the Voronoi diagram. Once the
identified circle event is processed, the middle arc, associated with r1 in this case,
has no further effect on any other point in P, so it can be removed from the beach
line. The resulting beach line state is shown in the binary tree on the right side of
Figure 9-15.

Figure 9-15. Beach line after processing circle event

Input/Output
The input is a set of two-dimensional points P in a plane.

Fortune Sweep computes a Voronoi diagram composed of n Voronoi polygons,
each of which defines the region for one of the points in P. Mathematically, there
may be partially infinite regions, but the algorithm eliminates these by computing
the Voronoi diagram within a bounding box of suitable size to enclose all points in
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P. The output will be a set of line segments and Voronoi polygons that are defined
by edges in clockwise order around each point in P.

Some implementations assume P does not contain four cocircular points that form
a circle.

Some implementations assume that no two points share the same x or y coordinate.
Doing so eliminates many of the special cases. This is easy to implement when the
input set (x, y) contains integer coordinates: simply add a random fractional num‐
ber to each coordinate before invoking Fortune Sweep.

Solution
The implementation is complicated because of the computations needed to main‐
tain the beach line’s state; some of the special cases are omitted from the presenta‐
tion here. The code repository contains functions that perform the geometric
computations of intersecting parabolas. The classes that support this implementa‐
tion are summarized in Figure 9-16. This implementation uses Python’s heapq mod‐
ule, which provides heappop and heappush methods used to construct and process a
priority queue.

Figure 9-16. Classes supporting the code
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As shown in Example 9-4, the process method creates site events for each of the
input points and processes each event one at a time by descending y coordinate (ties
are broken by smaller x coordinate).

Fortune Sweep Summary
Best, Average, Worst: O(n log n)

fortune (P)
  PQ = new Priority Queue
  LineState = new Binary Tree

  foreach p in P do 
    event = new SiteEvent(p)
    insert event into PQ

    while PQ is not empty do
      event = getMin(PQ)

      sweepPt = event.p 
      if event is site event then
        processSite(event)
      else
        processCircle(event)

    finishEdges() 

processSite(e) 
  leaf = find arc A in beach line bisected by e.p

  modify beach line and remove unneeded circle events 
  detect new potential circle events

processCircle(e) 
  determine (left,right) neighboring arcs in beach line
  remove unneeded circle events
  record Voronoi vertex and Voroni edges
  modify beach line to remove "middle" arc
  detect new potential circle events to left and right

Priority queue orders events by descending y coordinate.

Sweep line is updated by point associated with each event removed.

Remaining breakpoints in beach line determine final edges.

Update beach line with each new point…

…which might remove potential circle events.

Compute Voronoi point and update beach line state.
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Example 9-4. Voronoi Python implementation

from heapq import heappop, heappush

class Voronoi:
  def process (self, points):
    self.pq = []
    self.edges = []
    self.tree = None
    self.firstPoint = None     # handle tie breakers with first point
    self.stillOnFirstRow = True
    self.points = []

    # Each point has unique identifier
    for idx in range(len(points)):
      pt = Point (points[idx], idx)
      self.points.append (pt)
      event = Event (pt, site=pt)
      heappush (self.pq, event)

    while self.pq:
      event = heappop (self.pq)
      if event.deleted:
        continue

      self.sweepPt = event.p
      if event.site:
        self.processSite (event)
      else:
        self.processCircle (event)

    # complete edges that remain and stretch to infinity
    if self.tree and not self.tree.isLeaf:
      self.finishEdges (self.tree)

      # Complete Voronoi Edges with partners
      for e in self.edges:
        if e.partner:
          if e.b is None:
            e.start.y = self.height
          else:
            e.start = e.partner.end

The implementation handles the special case when there are multiple points that
share the same largest y coordinate value; it does so by storing the firstPoint
detected within processSite.

The true details of Fortune Sweep are contained within the processSite imple‐
mentation shown in Example 9-5 and processCircle shown in Example 9-6.

276 | Chapter 9: Computational Geometry



Example 9-5. Voronoi process site event

def processSite (self, event):
  if self.tree == None:
    self.tree = Arc(event.p)
    self.firstPoint = event.p
    return

  # Must handle special case when two points are at topmost y coordinate, in
  # which case the root is a leaf node. Note that when sorting events, ties
  # are broken by x coordinate, so the next point must be to the right.
  if self.tree.isLeaf and event.y == self.tree.site.y:
    left = self.tree
    right = Arc(event.p)

    start = Point(((self.firstPoint.x + event.p.x)/2, self.height))
    edge = VoronoiEdge (start, self.firstPoint, event.p)

    self.tree = Arc(edge = edge)
    self.tree.setLeft (left)
    self.tree.setRight (right)

    self.edges.append (edge)
    return

  # If leaf had a circle event, it is no longer valid
  # since it is being split
  leaf = self.findArc (event.p.x)
  if leaf.circleEvent:
    leaf.circleEvent.deleted = True

  # find point on parabola where event.pt.x bisects with vertical line,
  start = leaf.pointOnBisectionLine (event.p.x, self.sweepPt.y)

  # Potential Voronoi edges discovered between two sites
  negRay = VoronoiEdge (start, leaf.site, event.p)
  posRay = VoronoiEdge (start, event.p, leaf.site)
  negRay.partner = posRay
  self.edges.append (negRay)

  # modify beach line with new interior nodes
  leaf.edge = posRay
  leaf.isLeaf = False

  left = Arc()
  left.edge = negRay
  left.setLeft (Arc(leaf.site))
  left.setRight (Arc(event.p))

  leaf.setLeft (left)
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  leaf.setRight (Arc(leaf.site))

  # Check whether there is potential circle event on left or right.
  self.generateCircleEvent (left.left)
  self.generateCircleEvent (leaf.right)

The processSite method modifies the beach line with each discovered site event to
insert two additional interior nodes and two additional leaf nodes. The findArc
method, in O(log n) time, locates the arc that must be modified by the newly discov‐
ered site event. In modifying the beach line, the algorithm computes two edges that
will ultimately be in the final Voronoi diagram. These are attached with the break‐
point Arc nodes in the tree. Whenever the beach line state changes, the algorithm
checks to the left and to the right to determine whether neighboring arcs form a
potential circle event.

Example 9-6. Voronoi process circle event

def processCircle (self, event):
  node = event.node

  # Find neighbor on the left and right.
  leftA  = node.getLeftAncestor()
  left   = leftA.getLargestDescendant()
  rightA = node.getRightAncestor()
  right  = rightA.getSmallestDescendant()

  # Eliminate old circle events if they exist.
  if left.circleEvent:
    left.circleEvent.deleted = True
  if right.circleEvent:
    right.circleEvent.deleted = True

  # Circle defined by left - node - right. Terminate Voronoi rays.
  p = node.pointOnBisectionLine (event.p.x, self.sweepPt.y)
  leftA.edge.end = p
  rightA.edge.end = p

  # Update ancestor node in beach line to record new potential edges.
  t = node
  ancestor = None
  while t != self.tree:
    t = t.parent
    if t == leftA:
      ancestor = leftA
    elif t == rightA:
      ancestor = rightA

  ancestor.edge = VoronoiEdge(p, left.site, right.site)
  self.edges.append (ancestor.edge)
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  # Remove middle arc (leaf node) from beach line tree.
  node.remove()

  # May find new neighbors after deletion so must check for circles.
  self.generateCircleEvent (left)
  self.generateCircleEvent (right)

The processCircle method is responsible for identifying new vertices in the Voro‐
noi diagram. Each circle event is associated with node, the topmost point in the cir‐
cumcircle that generated the circle event in the first place. This method removes
node from the beach line state since it can have no impact on future computations.
In doing so, there may be new neighbors on the beach line, so it checks on the left
and the right to see if any additional circle events should be generated.

These code examples depend on helper methods that perform geometrical compu‐
tations, including the pointOnBisectionLine and the intersect line intersection
methods. These details are found in the code repository. Much of the difficulty in
implementing Fortune Sweep lies in the proper implementation of these necessary
geometric computations. One way to minimize the number of special cases is to
assume all coordinate values in the input (both x and y) are unique and that no four
points are cocircular. Making these assumptions simplifies the computational pro‐
cessing, especially since you can ignore cases where the Voronoi diagram contains
horizontal or vertical lines.

The final code example, generateCircleEvent, shown in Example 9-7, determines
when three neighboring arcs on the beach line form a circle. If the lowest point of
this circle is above the sweep line (i.e., it would already have been processed) then it
is ignored; otherwise, an event is added to the event queue to be processed in order.
It may yet be eliminated if another site to be processed falls within the circle.

Example 9-7. Voronoi generate new circle event

def generateCircleEvent (self, node):
  """
  There is possibility of a circle event with this new node
  being the middle of three consecutive nodes. If so, then add
  new circle event to the priority queue for further processing.
  """

  # Find neighbors on the left and right, should they exist.
  leftA = node.getLeftAncestor()
  if leftA is None:
    return
  left = leftA.getLargestLeftDescendant()

  rightA = node.getRightAncestor()
  if rightA is None:
    return
  right = rightA.getSmallestRightDescendant()
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  # sanity check. Must be different
  if left.site == right.site:
    return

  # If two edges have no valid intersection, leave now.
  p = leftA.edge.intersect (rightA.edge)
  if p is None:
    return

  radius = ((p.x-left.site.x)**2 + (p.y-left.site.y)**2)**0.5

  # make sure choose point at bottom of circumcircle.
  circleEvent = Event(Point((p.x, p.y-radius)))
  if circleEvent.p.y >= self.sweepPt.y:
    return

  node.circleEvent = circleEvent
  circleEvent.node = node
  heappush (self.pq, circleEvent)

Analysis
The performance of Fortune Sweep is determined by the number of events inserted
into the priority queue. At the start, the n points must be inserted. During process‐
ing, each new site can generate at most two additional arcs, thus the beach line is at
most 2*n – 1 arcs. By using a binary tree to store the beach line state, we can locate
desired arc nodes in O(log n) time.

Modifying the leaf node in processSite requires a fixed number of operations, so it
can be considered to complete in constant time. Similarly, removing an arc node
within the processCircle method is also a constant time operation. Updating the
ancestor node in the beach line to record new potential edges remains an O(log n)
operation. The binary tree containing the line state is not guaranteed to be balanced,
but adding this capability only increases the performance of insert and remove to
O(log n). In addition, after rebalancing a binary tree, its previously existing leaf
nodes remain leaf nodes in the rebalanced tree.

Thus, whether the algorithm is processing a site event or a circle event, the
performance will be bounded by 2*n*log(n), which results in O(n log n) overall per‐
formance.

This complicated algorithm does not reveal its secrets easily. Indeed, even algorith‐
mic researchers admit that this is one of the more complicated applications of the
line-sweep technique. Truly, the best way to observe its behavior is to execute it step
by step within a debugger.
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10
Spatial Tree Structures

The algorithms in this chapter are concerned primarily with modeling
two-dimensional structures over the Cartesian plane to conduct powerful search
queries that go beyond simple membership, as covered in Chapter 5. These algo‐
rithms include:

Nearest neighbor
Given a set of two-dimensional points, P, determine which point is closest to a
target query point, x. This can be solved in O(log n) instead of an O(n) brute-
force solution.

Range queries
Given a set of two-dimensional points, P, determine which points are con‐
tained within a given rectangular region. This can be solved in O(n0.5 + r)
where r is the number of reported points, instead of an O(n) brute-force solu‐
tion.

Intersection queries
Given a set of two-dimensional rectangles, R, determine which rectangles inter‐
sect a target rectangular region. This can be solved in O(log n) instead of an
O(n) brute-force solution.

Collision detection
Given a set of two-dimensional points, P, determine the intersections between
squares of side s centered on these points. This can be solved in O(n log n)
instead of an O(n2) brute-force solution.

The structures and algorithms naturally extend to multiple dimensions, but this
chapter will remain limited to two-dimensional structures for convenience. The
chapter is named after the many ways researchers have been able to partition n-
dimensional data using the intuition at the heart of binary search trees.
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Nearest Neighbor Queries
Given a set of points, P, in a two-dimensional plane, you might need to determine
the point in P that is closest to a query point x using Euclidean distance. Note that
point x does not have to already exist in P, which differentiates this problem from
the searching algorithms from Chapter 5. These queries also extend to input sets
whose points are found in n-dimensional space.

The naïve implementation is to inspect all points in P, resulting in a linear O(n)
algorithm. Because P is known in advance, perhaps there is some way to structure
its information to speed up queries by discarding large groups of its points during
the search. Perhaps we could partition the plane into bins of some fixed size m by m,
as shown in Figure 10-1(a). Here 10 input points in P (shown as circles) are placed
into nine enclosing bins. The large shaded number in each bin reflects the number
of points in it. When searching for the closest neighbor for a point x (shown as a
small black square), find its enclosing bin. If that bin is not empty, we only need to
search the bins that intersect the focus circle whose radius is m*sqrt(2).

Figure 10-1. Bin approach for locating nearest neighbor

In this example, however, there are no points in the target bin, and the three neigh‐
boring bins will need to be examined. This ineffective approach is inappropriate
because many bins may in fact be empty, and the algorithm would still have to
search multiple neighboring bins. As we saw in Chapter 5, binary search trees
reduce the effort by eliminating from consideration groups of points that could not
be part of the solution. In this chapter, we introduce the idea of a spatial tree to par‐
tition the points in the two-dimensional plane to reduce the search time. The extra
cost of preprocessing all points in P into an efficient structure is recouped later by
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savings of the query computations, which become O(log n). If the number of
searches is small, then the brute-force O(n) comparison is best.

Range Queries
Instead of searching for a specific target point, a query could instead request all
points in P that are contained within a given rectangular region of the two-
dimensional plane. The brute-force solution checks whether each point is contained
within the target rectangular region, resulting in O(n) performance.

The same data structure developed for nearest-neighbor queries also supports these
queries, known as the “orthogonal range,” because the rectangular query region is
aligned with the x and y axes of the plane. The only way to produce better than O(n)
performance is to find a way to both discard points from consideration, and include
points in the query result. Using a k-d tree, the query is performed using a recursive
traversal, and the performance can be O(n0.5 + r), where r is the number of points
reported by the query.

Intersection Queries
The input set being searched can typically be more complicated than a single n-
dimensional point. Consider instead a set of rectangles R in a two-dimensional
plane where each rectangle ri is defined by a tuple (xlow, ylow, xhigh, yhigh). With this set
R you might want to locate all rectangles that intersect a given point (x, y) or (more
generally) intersect a target rectangle (x1, y1, x2, y2). Structuring the rectangles
appears to be more complicated because the rectangles can overlap each other in
the plane.

Instead of providing a target rectangle, we might be interested in identifying the
intersections among a collection of two-dimensional elements. This is known as the
collision detection problem, and we present a solution to detect intersections among
a collection of points, P, using square-based regions centered around each point.

Spatial Tree Structures
Spatial tree structures show how to represent data to efficiently support the execu‐
tion of these three common searches. In this chapter, we present a number of spatial
tree structures that have been used to partition n-dimensional objects to improve
the performance of search, insert, and delete operations. We now present three such
structures.

k-d Tree
In Figure 10-2(a), the same 10 points from Figure 10-1 are shown in a k-d tree, so
named because it can subdivide a k-dimensional plane along the perpendicular axes
of the coordinate system. These points are numbered in the order in which they
were inserted into the tree. The structure of the k-d tree from Figure 10-2(a) is
depicted as a binary tree in Figure 10-2(b). For the remainder of this discussion
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we assume a two-dimensional tree, but the approach can also be used for arbitrary
dimensions.

Figure 10-2. Division of two-dimensional plane using k-d tree

A k-d tree is a recursive binary tree structure where each node contains a point and
a coordinate label (i.e., either x or y) that determines the partitioning orientation.
The root node represents the rectangular region (xlow = –∞, ylow = –∞, xhigh = +∞,
yhigh = +∞) in the plane partitioned along the vertical line V through point p1. The
left subtree further partitions the region to the left of V, whereas the right subtree
further partitions the region to the right of the V. The left child of the root repre‐
sents a partition along the horizontal line H through p2 that subdivides the region to
the left of V into a region above the line H and a region below the line H. The region
(–∞, –∞, p1.x, +∞) is associated with the left child of the root, whereas the region
(p1.x, ≠∞, +∞, +∞) is associated with the right child of the root. These regions are
effectively nested, and we can see that the region of an ancestor node wholly con‐
tains the regions of any of its descendant nodes.

Quadtree
A quadtree partitions a set of two-dimensional points, P, recursively subdividing the
overall space into four quadrants. It is a tree-like structure where each nonleaf node
has four children, labeled NE (NorthEast), NW (NorthWest), SW (SouthWest), and
SE (SouthEast). There are two distinct flavors of quadtrees:

Region-based
Given a 2k by 2k image of pixels where each pixel is 0 or 1, the root of a quad‐
tree represents the entire image. Each of the four children of the root repre‐
sents a 2k–1 by 2k–1 quadrant of the original image. If one of these four regions is
not entirely 0s or 1s, then the region is subdivided into subregions, each of
which is one-quarter the size of its parent. Leaf nodes represent a square region
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of pixels that are all 0s or 1s. Figure 10-3 describes the tree structure with a
sample image bitmap.

Figure 10-3. Quadtree using region-based partitioning

Point-based
Given a 2k by 2k space in the Cartesian plane, the quadtree directly maps to a
binary tree structure, where each node can store up to four points. If a point is
added to a full region, the region is subdivided into four regions each one-
quarter the size of its parent. When no points are present in a quadrant for a
node, then there is no child node for that quadrant, and so the shape of the tree
depends on the order the points were added to the quadtree.

For this chapter, we focus on point-based quadtrees. Figure 10-4 shows an example
containing 13 points in a 256 by 256 region. The quadtree structure is shown on the
right side of the image. Note that there are no points in the root’s SouthEast quad‐
rant, so the root only has three children nodes. Also note the variable subdivisions
of the regions based on which points have been added to the quadtree.

R-Tree
An R-Tree is a tree structure in which each node contains up to M links to children
nodes. All actual information is stored by the leaf nodes, each of which can store up
to M different rectangles. Figure 10-5 depicts an R-Tree where M = 4 and six rectan‐
gles have been inserted (labeled 1, 2, 3, 4, 5, and 6). The result is the tree shown on
the right where the interior nodes reflect different rectangular regions inside of
which the actual rectangles exist.
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Figure 10-4. Quadtree using point-based partitioning

Figure 10-5. R-Tree example

The root node represents the smallest rectangular region (xlow, ylow, xhigh, yhigh) that
includes all other rectangles in the tree. Each interior node has an associated rectan‐
gular region that similarly includes all rectangles in its descendant nodes. The actual
rectangles in the R-Tree are stored only in leaf nodes. Aside from the root node,
every rectangular region (whether associated with an interior node or a leaf node) is
wholly contained by the region of its parent node.

We now use these various spatial structures to solve the problems outlined at the
beginning of this chapter.

Nearest Neighbor Queries
Given a set of two-dimensional points, P, you are asked to determine which point in
P is closest to a target query point, x. We show how to use k-d trees to efficiently
perform these queries. Assuming the tree is effective in partitioning the points, each
recursive traversal through the tree will discard roughly half of the points in the
tree. In a k-d tree for points distributed in a normal manner, nodes on level i reflect
rectangles that are roughly twice as large as the rectangles on level i + 1. This prop‐
erty will enable Nearest Neighbor to exhibit O(log n) performance because it will be
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able to discard entire subtrees containing points that are demonstrably too far to be
the closest point. However, the recursion is a bit more complex than for regular
binary search trees, as we will show.

As shown in Figure 10-6, if the target point (shown as a small black square) were
inserted, it would become a child of the node associated with point 9. Upon calling
nearest with this selection, the algorithm can discard the entire left subtree because
the perpendicular distance dp is not closer, so none of those points can be closer.
Recursing into the right subtree, the algorithm detects that point 3 is closer. Further,
it determines that the perpendicular distance to point 3 is closer than min so it must
recursively investigate both subtrees rooted at points 7 and 8. Ultimately it deter‐
mines that point 3 is the closest point.

Figure 10-6. Nearest Neighbor example
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Nearest Neighbor Summary
Best, Average: O(log n) Worst: O(n)

nearest (T, x)
  n = find parent node in T where x would have been inserted

  min = distance from x to n.point 

  better = nearest (T.root, min, x) 
  if better found then return better
  return n.point
end

nearest (node, min, x)
  d = distance from x to node.point
  if d < min then

    result = node.point 
    min = d
  dp = perpendicular distance from x to node

  if dp < min then 
    pt = nearest (node.above, min, x)
    if distance from pt to x < min then
      result = pt
      min = distance from pt to x
    pt = nearest (node.below, min, x)
    if distance from pt to x < min then
      result = pt
      min = distance from pt to x

  else 
    if node is above x then
      pt = nearest (node.above, min, x)
    else
      pt = nearest (node.below, min, x)
    if pt exists then return pt
  return result
end

Choose reasonable best guess for closest point.

Traverse again from root to try to find better one.

A closer point is found.

If too close to call, check both above and below subtrees.

Otherwise, can safely check only one subtree.
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Input/Output
The input is a k-d tree formed from a set of two-dimensional points P in a plane. A
set of nearest neighbor queries (not known in advance) is issued one at a time to
find the nearest point in P to a point x.

For each query point x, the algorithm computes a point in P that is the closest
neighbor to x.

If two points are “too close” to each other through floating-point error, the
algorithm may incorrectly select the wrong point; however, the distance to the
actual closest point would be so close that there should be no impact by this faulty
response.

Context
When comparing this approach against a brute-force approach that compares the
distances between query point x and each point p ∈ P, there are two important costs
to consider: (1) the cost of constructing the k-d tree, and (2) the cost of locating the
query point x within the tree structure. The trade-offs that impact these costs are:

Number of dimensions
As the number of dimensions increases, the cost of constructing the k-d
tree overwhelms its utility. Some authorities believe that for more than 20
dimensions, this approach is less efficient than a straight comparison against all
points.

Number of points in the input set
When the number of points is small, the cost of constructing the structure may
outweigh the improved performance.

Binary trees can be efficient search structures because they can be balanced as nodes
are inserted into and deleted from the tree. Unfortunately, k-d trees cannot be bal‐
anced easily, nor can points be deleted, because of the deep structural information
about the dimensional plane they represent. The ideal solution is to construct the
initial k-d tree so that either (a) the leaf nodes are at the same level in the tree, or (b)
all leaf nodes are within one level of all other leaf nodes.

Solution
Given an existing k-d tree, Nearest Neighbor implementation is shown in
Example 10-1.

Example 10-1. Nearest Neighbor implementation in KDTree

// KDTree method.
public IMultiPoint nearest (IMultiPoint target) {
  if (root == null||target == null) return null;

  // Find parent node to which target would have been inserted.

Sp
atial Tree

Structures

Nearest Neighbor Queries | 291



  // Best shot at finding closest point.
  DimensionalNode parent = parent (target);
  IMultiPoint result = parent.point;
  double smallest = target.distance (result);

  // Start back at the root to try to find closer one.
  double best[] = new double[] { smallest };

  double raw[] = target.raw();
  IMultiPoint betterOne = root.nearest (raw, best);
  if (betterOne != null) { return betterOne; }
  return result;
}

// DimensionalNode method. min[0] is best computed shortest distance.
IMultiPoint nearest (double[] rawTarget, double min[]) {
  // Update minimum if we are closer.
  IMultiPoint result = null;

  // If shorter, update minimum
  double d = shorter (rawTarget, min[0]);
  if (d >= 0 && d < min[0]) {
    min[0] = d;
    result = point;
  }

  // determine if we must dive into the subtrees by computing direct
  // perpendicular distance to the axis along which node separates
  // the plane. If d is smaller than the current smallest distance,
  // we could "bleed" over the plane so we must check both.
  double dp = Math.abs (coord — rawTarget[dimension-1]);
  IMultiPoint newResult = null;

  if (dp < min[0]) {
    // must dive into both. Return closest one.
    if (above != null) {
      newResult = above.nearest (rawTarget, min);
      if (newResult != null) { result = newResult; }
    }

    if (below != null) {
      newResult = below.nearest (rawTarget, min);
      if (newResult != null) { result = newResult; }
    }
  } else {
    // only need to go in one! Determine which one now.
    if (rawTarget[dimension-1] < coord) {
      if (below != null) {
        newResult = below.nearest (rawTarget, min);
      }
    } else {
      if (above != null) {
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        newResult = above.nearest (rawTarget, min);
      }
    }

    // Use smaller result, if found.
    if (newResult != null) { return newResult; }
  }
  return result;
}

The key to understanding Nearest Neighbor is that we first locate the region where
the target point would have been inserted, since this will likely contain the closest
point. We then validate this assumption by recursively checking from the root
back down to this region to see whether some other point is actually closer. This
could easily happen because the rectangular regions of the k-d tree were created
based on the set of input points. In unbalanced k-d trees, this checking process
might incur an O(n) total cost, reinforcing the notion that the input set must be
properly processed.

The example solution has two improvements to speed up its performance. First, the
comparisons are made on the “raw” double array representing each point. Second, a
shorter method in DimensionalNode is used to determine when the distance
between two d-dimensional points is smaller than the minimum distance computed
so far; this method exits immediately when a partial computation of the Euclidean
distance exceeds the minimum found.

Assuming the initial k-d tree is balanced, the search can advantageously discard up
to half of the points in the tree during the recursive invocations. Two recursive invo‐
cations are sometimes required, but only when the computed minimum distance is
just large enough to cross over the dividing line for a node, in which case both sides
need to be explored to find the closest point.

Analysis
The k-d tree is initially constructed as a balanced k-d tree, where the dividing line
on each level is derived from the median of the points remaining at that level. Locat‐
ing the parent node of the target query can be found in O(log n) by traversing the k-
d tree as if the point were to be inserted. However, the algorithm may make two
recursive invocations: one for the child above and one for the child below.

If the double recursion occurs frequently, the algorithm degrades to O(n), so it is
worth understanding how often it can occur. The multiple invocations occur only
when the perpendicular distance, dp, from the target point to the node’s point is less
than the best computed minimum. As the number of dimensions increases, there
are more potential points that satisfy these criteria.

Table 10-1 provides some empirical evidence to show how often this occurs. A
balanced k-d tree is created from n = 4 to 131,072 random two-dimensional points
generated within the unit square. A set of 50 nearest point queries is issued for a
random point within the unit square, and Table 10-1 records the average number of
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times two recursive invocations occurred (i.e., when dp < min[0] and the node in
question has children both above and below), as compared to single recursive
invocations.

Table 10-1. Ratio of double-recursion invocations to single

n d = 2
#Recursions

d = 2
#Double recursion

d = 10
#Recursion

d = 10
#Double recursion

4 1.96 0.52 1.02 0.98

8 3.16 1.16 1.08 2.96

16 4.38 1.78 1.2 6.98

32 5.84 2.34 1.62 14.96

64 7.58 2.38 5.74 29.02

128 9.86 2.98 9.32 57.84

256 10.14 2.66 23.04 114.8

512 12.28 2.36 53.82 221.22

1,024 14.76 3.42 123.18 403.86

2,048 16.9 4.02 293.04 771.84

4,096 15.72 2.28 527.8 1214.1

8,192 16.4 2.6 1010.86 2017.28

16,384 18.02 2.92 1743.34 3421.32

32,768 20.04 3.32 2858.84 4659.74

65,536 21.62 3.64 3378.14 5757.46

131,072 22.56 2.88 5875.54 8342.68

From this random data, the number of double recursions appears to be .3*log(n) for
two dimensions, but this jumps to 342*log(n) for 10 dimensions (a 1,000-fold
increase). The important observation is that both of these estimation functions con‐
form to O(log n).

But what happens when d increases to be “sufficiently close” to n in some way? The
data graphed in Figure 10-7 shows that as d increases, the number of double recur‐
sions actually approaches n/2. In fact, as d increases, the number of single recur‐
sions conforms to a normal distribution whose mean is very close to log(n), which
tells us that eventually all recursive invocations are of the double variety. The impact
this discovery has on the performance of nearest-neighbor queries is that as d
approaches log(n), the investment in using k-d trees begins to diminish until the
resulting performance is no better than O(n), because the number of double recur‐
sions plateaus at n/2.
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Figure 10-7. Number of double recursions as n and d increase

Certain input set data sets force Nearest Neighbor to work hard even in two dimen‐
sions. For example, let’s change the input for Table 10-1 such that the n unique two-
dimensional points are found on the edge of a circle of radius r > 1, but the nearest
query points still lie within the unit square. When n = 131,072 points, the number
of single recursions has jumped 10-fold to 235.8 while the number of double recur‐
sions has exploded to 932.78 (a 200-fold increase!). Thus, the nearest neighbor
query will degenerate in the worst case to O(n) given specifically tailored queries for
a given input set. Figure 10-8 demonstrates a degenerate k-d tree with 64 points
arranged in a circle.

We can also evaluate the performance of k-d tree Nearest Neighbor against a
straight brute-force O(n) comparison. Given a data set of size n = 131,072 points,
where 128 searches random are to be executed, how large must the dimensionality d
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of the input set be before the brute-force Nearest Neighbor implementation outper‐
forms the k-d tree implementation?

Figure 10-8. Circular data set leads to inefficient k-d tree

We ran 100 trials and discarded the best and worst trials, computing the average of
the remaining 98 trials. The results are graphed in Figure 10-9 and show that for
d = 11 dimensions and higher, the brute-force nearest neighbor implementation
outperforms the Nearest Neighbor k-d tree algorithm. The specific crossover point
depends on the machine hardware on which the code executes, the specific values of
n and d, and the distribution of points in the input set. We do not include in this
crossover analysis the cost of constructing the k-d tree, because that cost can be
amortized across all searches.

The results in Figure 10-9 confirm that as the number of dimensions increases, the
benefit of using Nearest Neighbor over brute force decreases. The cost of construct‐
ing the k-d trees is not a driving factor in the equation, because that is driven
primarily by the number of data points to be inserted into the k-d tree, not by the
number of dimensions. On larger data set sizes, the savings is more pronounced.
Another reason for the worsening performance as d increases is that computing
the Euclidean distance between two d-dimensional points is an O(d) operation.
Although it can still be considered a constant time operation, it simply takes more
time.

To maximize the performance of k-d tree searches, the tree must be balanced.
Example 10-2 demonstrates the well-known technique for constructing a balanced
k-d tree using recursion to iterate over each of the coordinate dimensions. Simply
put, it selects the median element from a set of points to represent the node; the
elements below the median are inserted into the below subtree, whereas elements
above the median are inserted into the above subtree. The code works for arbitrary
dimensions.
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Figure 10-9. Comparing k-d tree versus brute-force implementation

Example 10-2. Recursively construct a balanced k-d tree

public class KDFactory {

  private static Comparator<IMultiPoint> comparators[];

  // Recursively construct KDTree using median method on points.
  public static KDTree generate (IMultiPoint []points) {
    if (points.length == 0) { return null; }

    // median will be the root.
    int maxD = points[0].dimensionality();
    KDTree tree = new KDTree(maxD);

    // Make dimensional comparators that compare points by ith dimension
    comparators = new Comparator[maxD+1];
    for (int i = 1; i <= maxD; i++) {
      comparators[i] = new DimensionalComparator(i);
    }
    tree.setRoot (generate (1, maxD, points, 0, points.length-1));
    return tree;
  }

  // generate node for d-th dimension (1 <= d <= maxD)
  // for points[left, right]
  private static DimensionalNode generate (int d, int maxD,
                                           IMultiPoint points[],
                                           int left, int right) {
    // Handle the easy cases first
    if (right < left) { return null; }
    if (right == left) { return new DimensionalNode (d, points[left]); }
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    // Order the array[left,right] so mth element will be median and
    // elements prior to it will be <= median, though not sorted;
    // similarly, elements after will be >= median, though not sorted
    int m = 1+(right-left)/2;
    Selection.select (points, m, left, right, comparators[d]);

    // Median point on this dimension becomes the parent
    DimensionalNode dm = new DimensionalNode (d, points[left+m-1]);

    // update to the next dimension, or reset back to 1
    if (++d > maxD) { d = 1; }

    // recursively compute left and right subtrees, which translate
    // into 'below' and 'above' for n-dimensions.
    dm.setBelow (maxD, generate (d, maxD, points, left, left+m-2));
    dm.setAbove (maxD, generate (d, maxD, points, left+m, right));
    return dm;
  }
}

The select operation was described in Chapter 4. It can select the kth smallest num‐
ber recursively in O(n) time in the average case; however, it does degrade to O(n2)
in the worst case.

Variations
In the implementation we have shown, the method nearest traverses from the root
back down to the computed parent; alternate implementations start from the parent
and traverse back to the root, in bottom-up fashion.

Range Query
Given a rectangular range R defined by (xlow, ylow, xhigh, yhigh) and a set of points P,
which points in P are contained within a target rectangle T? A brute-force algorithm
that inspects all points in P can determine the enclosed points in O(n)—can we
do better?

For Nearest Neighbor, we organized the points into a k-d tree to process nearest-
neighbor queries in O(log n) time. Using the same data structure, we now show how
to compute Range Query in O(n0.5 + r), where r is the number of points reported by
the query. Indeed, when the input set contains d-dimensional data points, the solu‐
tion scales to solve d-dimensional Range Query problems in O(n1–1/d + r).

Given target region, T, which covers the left half of the plane to just beyond point 7
in Figure 10-10, we can observe all three of these cases. Since T does not wholly
contain the infinite region associated with the root node, Range Query checks
whether T contains point 1, which it does, so that point is added to the result. Now
T extends into both its above and below children, so both recursive calls are made.
In the first recursion below point 1, T wholly contains the region associated with
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point 2. Thus, point 2 and all of its descendants are added to the result. In the sec‐
ond recursion, eventually point 7 is discovered and added to the result.

Range Query Summary
Best, Average: O(n1-1/d + r)    Worst: O(n)

range (space)
  results = new Set
  range (space, root, results)
  return results
end

range (space, node, results)

  if space contains node.region then 
    add node.points and all of its descendants to results
    return

  if space contains node.point then 
    add node.point to results

  if space extends below node.coord then 
    range (space, node.below, results)
  if space extends above node.coord then
    range (space, node.above, results)
end

Should a k-d tree node be wholly contained by search space, all descendants are
added to results.

Ensure point is added to results if contained.

May have to search both above and below.

Input/Output
The input is a set of n points P in d-dimensional space and a d-dimensional hyper‐
cube that specifies the desired range query. The range queries are aligned properly
with the axes in the d-dimensional data set because they are specified by d individ‐
ual ranges, for each dimension of the input set. For d = 2, the range query has both a
range over x coordinates and a range over y coordinates.

Range Query generates the full set of points enclosed by the range query. The
points do not appear in any specific order.

Context
k-d trees become unwieldy for a large number of dimensions, so this algorithm and
overall approach should be restricted to small dimensional data. For two-
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dimensional data, k-d trees offers excellent performance for Nearest Neighbor and
Range Query problems.

Figure 10-10. Range Query example
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Solution
The Java solution shown in Example 10-3 is a method of the DimensionalNode class,
which is simply delegated by the range(IHypercube) method found in KDTree. The
key efficiency gain of this algorithm occurs when the region for a DimensionalNode
is wholly contained within the desired range query. In this circumstance, all
descendant nodes of the DimensionalNode can be added to the results collection
because of the k-d tree property that the children for a node are wholly contained
within the region of any of its ancestor nodes.

Example 10-3. Range Query implementation in DimensionalNode

public void range (IHypercube space, KDSearchResults results) {
  // Wholly contained? Take all descendant points
  if (space.contains (region)) {
    results.add (this);
    return;
  }

  // Is our point at least contained?
  if (space.intersects (cached)) {
    results.add (point);
  }

  // Recursively progress along both ancestral trees, if demanded.
  // The cost in manipulating space to be "cropped" to the proper
  // structure is excessive, so leave alone and is still correct.
  if (space.getLeft(dimension) < coord) {
    if (below != null) { below.range (space, results); }
  }
  if (coord < space.getRight(dimension)) {
    if (above != null) { above.range (space, results); }
  }
}

The code shown in Example 10-3 is a modified tree traversal that potentially visits
every node in the tree. Because the k-d tree partitions the d-dimensional data set in
hierarchical fashion, there are three decisions Range Query makes at each node n:

Is the region associated with node n fully contained within the query region?
When this happens, the range traversal can stop because all descendant points
belong to the query result.

Does the query region contain the point associated with node n?
If so, add the point associated with n to the result set.

Along the dimension d represented by node n, does query region intersect n?
It can do so in two ways since the query region can intersect both the region
associated with n’s below subtree as well as the region associated with n’s above
subtree. The code may perform zero, one, or two recursive traversals of range.
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Observe that the result returned is a KDSearchResults object that contains both
individual points as well as entire subtrees. Thus, to retrieve all points you will have
to traverse each subtree in the result.

Analysis
It is possible that the query region contains all points in the tree, in which case all
points are returned, which leads to O(n) performance. However, when Range
Query detects that the query region does not intersect an individual node within
the k-d tree, it can prune the traversal. The cost savings depend on the number of
dimensions and the specific nature of the input set. Preparata and Shamos
(1985) showed that Range Query using k-d trees performs in O(n1–1/d + r), where r
is the number of results found. As the number of dimensions increases, the benefit
decreases.

Figure 10-11 graphs the expected performance of an O(n1–1/d) algorithm; the dis‐
tinctive feature of the graph is fast performance for small values of d that over time
inexorably approaches O(n). Because of the addition of r (the number of points
returned by the query), the actual performance will deviate from the ideal curve
shown in Figure 10-11.

Figure 10-11. Expected performance for O(n1-1/d) algorithm

It is difficult to produce sample data sets to show the performance of Range Query.
We demonstrate the effectiveness of Range Query on a k-d tree by comparing its
performance to a brute-force implementation that inspects each point against the
desired query region. The d-dimensional input set for each of these situations con‐
tains n points whose coordinate values are drawn uniformly from the range [0, s],
where s = 4,096. We evaluate three situations:
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Query region contains all points in the tree
We construct a query region that contains all of the points in the k-d tree. This
example provides the maximum speed-up supported by the algorithm; its per‐
formance is independent of the number of dimensions d in the k-d tree. The k-
d tree approach takes about 5–7 times as long to complete; this represents the
overhead inherent in the structure. In Table 10-2, the performance cost for the
brute-force region query increases as d increases because computing whether a
d-dimensional point is within a d-dimensional space is an O(d) operation,
not constant. The brute-force implementation handily outperforms the k-d tree
implementation.

Table 10-2. Comparing Range Query execution times in milliseconds (k-d tree
versus brute force) for all points in the tree

n d = 2 RQ d = 3 RQ d = 4 RQ d = 5 RQ d = 2 BF d = 3 BF d = 4 BF d = 5 BF

4,096 6.22 13.26 19.6 22.15 4.78 4.91 5.85 6

8,192 12.07 23.59 37.7 45.3 9.39 9.78 11.58 12

16,384 20.42 41.85 73.72 94.03 18.87 19.49 23.26 24.1

32,768 42.54 104.94 264.85 402.7 37.73 39.21 46.64 48.66

65,536 416.39 585.11 709.38 853.52 75.59 80.12 96.32 101.6

131,072 1146.82 1232.24 1431.38 1745.26 162.81 195.87 258.6 312.38

Fractional regions
Because the number of results found, r, plays a prominent role in determining
the performance of the algorithm, we construct a set of scenarios to isolate this
variable as the number of dimensions increases.

The uniformity of the input set discourages us from simply constructing a
query region [.5*s, s] for each dimension of input. If we did this, the total
volume of the input set queried is (1/2)d, which implies that as d increases the
number of expected points, r, returned by the query region decreases. Instead,
we construct query regions whose size increases as d increases. For example, in
two dimensions the query region with [.5204*s, s] on each dimension should
return .23*n points because (1 – .5204)2 = .23. However, for three dimensions
the query region must expand to [.3873*s, s] on each dimension since
(1 – .3873)3 = .23.

Using this approach, we fix in advance the desired ratio k such that our con‐
structed query will return k*n points (where k is either 0.23, 0.115, 0.0575,
0.02875, or 0.014375). We compare the k-d tree implementation against a
brute-force implementation as n varies from 4,096 to 131,072 and d varies from
2 to 15, as shown in Figure 10-12. The charts on the left side show the distinc‐
tive behavior of the O(n1–1/d) k-d tree algorithm while the right side shows the
linear performance of brute force. For a 0.23 ratio, the k-d tree implementation
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outperforms brute force only for d = 2 and n ≤ 8,192; however, for a ratio of
0.014375, the k-d tree implementation wins for d ≤ 6 and n ≤ 131,072.

Figure 10-12. Comparing k-d tree versus brute force for fractional regions

Empty region
We construct a query region from a single random point drawn uniformly
from the same values for the input set. Performance results are shown in
Table 10-3. The k-d tree executes nearly instantaneously; all recorded execution
times are less than a fraction of a millisecond.
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Table 10-3. Brute-force Range Query execution times in milliseconds for
empty region

n d = 2 BF d = 3 BF d = 4 BF d = 5 BF

4,096 3.36 3.36 3.66 3.83

8,192 6.71 6.97 7.3 7.5

16,384 13.41 14.02 14.59 15.16

32,768 27.12 28.34 29.27 30.53

65,536 54.73 57.43 60.59 65.31

131,072 124.48 160.58 219.26 272.65

Quadtrees
Quadtrees can be used to solve the following queries:

Range queries
Given a collection of points in the Cartesian plane, determine the points that
exist within a query rectangle. A sample application is shown in Figure 10-13
where a dashed rectangle is selected by the user, and points contained within
the rectangle are highlighted. When a quadtree region is wholly contained by
the target query, the application draws that region with a shaded background.

Figure 10-13. Range searching using a quadtree

Collision detection
Given a collection of objects in the Cartesian plane, determine all intersections
among the objects. A sample application is shown in Figure 10-14 that identi‐
fies the collisions among a number of moving squares that bounce back and
forth within a window. Squares that intersect each other are highlighted.
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Quadtree Summary
Best, Average, Worst: O(log n)

add (node, pt)
  if node.region does not contain pt then
    return false
  if node is leaf node then

    if node already contains pt then 
      return false

    if node has < 4 points then 
      add pt to node
      return true

  q = quadrant for pt in node
  if node is leaf node then

     node.subdivide() 

  return add(node.children[q], pt) 

range (node, rect, result)

  if rect contains node.region then 
    add (node, true) to result
  else if node is leaf node then
    foreach point p in node do
      if rect contains p then

        add (p, false) to result 
  else
    foreach child in node.children do
      if rect overlaps child.region

        range(child, rect, result) 

Impose set semantics on quadtree.

Each node can store up to four points.

Leaf points are distributed among four new children.

Insert new point into correct child.

Entire subtree is contained and returned.

Individual points returned.

Recursively check each overlapping child.
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Figure 10-14. Collision detection using a quadtree

Input/Output
The input is a set of two-dimensional points P in a plane from which a quadtree
is constructed.

For optimal performance, a range query returns the nodes in the quadtree, which
allows it to return entire subtrees of points when the target rectangle wholly con‐
tains a subtree of points. The results of a collision detection are the existing points
that intersect with a target point.

Solution
The basis of the Python implementation of quadtree is the QuadTree and QuadNode
structures shown in Example 10-4. The smaller2k and larger2k helper methods
ensure the initial region has sides that are powers of two. The Region class repre‐
sents a rectangular region.

Example 10-4. Quadtree QuadNode implementation

class Region:
  def __init__(self, xmin,ymin, xmax,ymax):
    """
    Creates region from two points (xmin,ymin) to (xmax,ymax). Adjusts if
    these are not the bottom-left and top-right coordinates for a region.
    """
    self.x_min = xmin if xmin < xmax else xmax
    self.y_min = ymin if ymin < ymax else ymax
    self.x_max = xmax if xmax > xmin else xmin
    self.y_max = ymax if ymax > ymin else ymin

class QuadNode:
  def __init__(self, region, pt = None, data = None):
    """Create empty QuadNode centered on origin of given region."""
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    self.region = region
    self.origin = (region.x_min + (region.x_max - region.x_min)//2,
                   region.y_min + (region.y_max - region.y_min)//2)
    self.children = [None] * 4

    if pt:
      self.points = [pt]
      self.data = [data]
    else:
      self.points = []
      self.data = []

class QuadTree:
  def __init__(self, region):
    """Create QuadTree over square region whose sides are powers of 2."""
    self.root = None
    self.region = region.copy()

    xmin2k = smaller2k(self.region.x_min)
    ymin2k = smaller2k(self.region.y_min)
    xmax2k = larger2k(self.region.x_max)
    ymax2k = larger2k(self.region.y_max)

    self.region.x_min = self.region.y_min = min(xmin2k, ymin2k)
    self.region.x_max = self.region.y_max = max(xmax2k, ymax2k)

Points are added to the quadtree using the add method shown in Example 10-5. The
add method returns False if the point is already contained within the quadtree, thus
it enforces mathematical set semantics. Up to four points are added to a node if the
point is contained within that node’s rectangular region. When the fifth point is
added, the node’s region is subdivided into quadrants and the points are reassigned
to the individual quadrants of that node’s region; should all points be assigned to the
same quadrant, the process repeats until all leaf quadrants have four or fewer points.

Example 10-5. Quadtree add implementation

class QuadNode:
  def add (self, pt, data):
    """Add (pt, data) to the QuadNode."""
    node = self
    while node:
      # Not able to fit in this region.
      if not containsPoint (node.region, pt):
        return False

      # if we have points, then we are leaf node. Check here.
      if node.points != None:
        if pt in node.points:
          return False
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        # Add if room
        if len(node.points) < 4:
          node.points.append (pt)
          node.data.append (data)
          return True

      # Find quadrant into which to add.
      q = node.quadrant (pt)
      if node.children[q] is None:
        # subdivide and reassign points to each quadrant. Then add point.
        node.subdivide()
      node = node.children[q]

    return False

class QuadTree:
  def add (self, pt, data = None):
    if self.root is None:
      self.root = QuadNode(self.region, pt, data)
      return True

    return self.root.add (pt, data)

With this structure, the range method in Example 10-6 demonstrates how to effi‐
ciently locate all points in the quadtree that are contained by a target region. This
Python implementation uses the yield operator to provide an iterator interface to
the results. The iterator contains tuples that are either individual points or entire
nodes. When a quadtree node is wholly contained by a region, that entire node is
returned as part of the result. The caller can retrieve all descendant values using a
preorder traversal of the node, provided by QuadNode.

Example 10-6. Quadtree Range Query implementation

class QuadNode:
  def range(self, region):
    """
    Yield (node,True) when node contained within region,
    otherwise (region,False) for individual points.
    """
    if region.containsRegion (self.region):
      yield (self, True)
    else:
      # if we have points, then we are leaf node. Check here.
      if self.points != None:
        for i in range(len(self.points)):
          if containsPoint (region, self.points[i]):
            yield ((self.points[i], self.data[i]), False)
      else:
        for child in self.children:
          if child.region.overlap (region):
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            for pair in child.range (region):
              yield pair

class QuadTree:
  def range(self, region):
    """Yield (node,status) in Quad Tree contained within region."""
    if self.root is None:
      return None

    return self.root.range(region)

To support collision detection, Example 10-7 contains the collide method which
searches through the quadtree to locate points in the tree that intersect a square
with sides of length r centered at a given point, pt.

Example 10-7. Quadtree collision detection implementation

class QuadNode:
  def collide (self, pt, r):
    """Yield points in leaf that intersect with pt and square side r."""
    node = self
    while node:
      # Point must fit in this region
      if containsPoint (node.region, pt):
        # if we have points, then we are leaf node. Check here
        if node.points != None:
          for p,d in zip(node.points, node.data):
            if p[X]-r <= pt[X] <= p[X]+r and p[Y]-r <= pt[Y] <= p[Y]+r:
              yield (p, d)

        # Find quadrant into which to check further
        q = node.quadrant (pt)
        node = node.children[q]

class QuadTree:
  def collide(self, pt, r):
    """Return collisions to point within Quad Tree."""
    if self.root is None:
       return None

    return self.root.collide (pt, r)

Analysis
Quadtrees partition the points in a plane using the same underlying structure of
binary search trees. The region-based implementation presented here uses a fixed
partitioning scheme that leads to efficient behavior when the collection of points is
uniformly distributed. It may happen that the points are all clustered together in a
small space, as shown in Figure 10-15. Thus, the search performance is logarithmic
with respect to the tree size. The range query in Python is made efficient by return‐
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ing both individual points as well as entire nodes in the quadtree; however, you
must still consider the time to extract all descendant values in the nodes returned by
the range query.

Figure 10-15. Degenerate quadtree

Variations
The quadtree structure presented here is a region quadtree. A point quadtree repre‐
sents two-dimensional points. The Octree extends quadtree into three dimensions,
with eight children (as with a cube) instead of four (Meagher, 1995).

R-Trees
Balanced binary trees are an incredibly versatile data structure that offer great per‐
formance for search, insert, and delete operations. However, they work best in pri‐
mary memory using pointers and allocating (and releasing) nodes as needed. These
trees can only grow as large as primary memory and they are not easily stored to
secondary storage, such as a file system. Operating systems provide virtual memory
so programs can operate using an assigned memory space, which might be larger
than the actual memory. The operating system ensures a fixed-size block of memory
(known as a page) is brought into primary memory as needed, and older unused
pages are stored to disk (if modified) and discarded. Programs work most efficiently
when consolidating read and write access using pages, which are typically 4,096
bytes in size. If you consider that a node in a binary tree might only require 24 bytes
of storage, there would be dozens of such nodes packed to a page. It is not immedi‐
ately clear how to store these binary nodes to disk especially when the tree is
dynamically updated.

The B-Tree concept was developed by Bayer and McCreight in 1972, though it
appears to have been independently discovered by vendors of database management
systems and operating systems. A B-Tree extends the structure of a binary tree by
allowing each node to store multiple values and multiple links to more than two
nodes. A sample B-Tree is shown in Figure 10-16.
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Figure 10-16. Sample B-Tree

Each node n contains a number of ascending values { k1, k2, …, km–1 } and pointers
{ p1, p2, …, pm } where m determines the maximum number of children nodes that n
can point to. The value m is known as the order of the B-Tree. Each B-Tree node can
contain m-1 values.

To maintain the binary search tree property, B-Tree nodes store key values such that
all values in the subtree pointed to by p1 are smaller than k1. All values in the subtree
pointed to by pi are greater than or equal to ki and smaller than ki+1. Finally, all val‐
ues in the subtree pointed to by pm are greater than km–1.

Using Knuth’s definition, a B-Tree of order m satisfies the following:

• Every node has at most m children.
• Every nonleaf node (except the root) has at least ⌈m ⁄ 2⌉ children.
• The root has at least two children if it is not a leaf node.
• A nonleaf node with k children nodes contains k − 1 key values.
• All leaves appear in the same level.

Using this definition, a traditional binary tree is a degenerate B-Tree of order m = 2.
Insertions and deletions in a B-Tree must maintain these properties. In doing so, the
longest path in a B-Tree with n keys contains at most logm(n) nodes, leading to
O(log n) performance for its operations. B-Trees can be readily stored to secondary
storage by increasing the number of keys in each node so that its total size properly
aligns with the page size (e.g., storing two B-Tree nodes per page), which minimizes
the number of disk reads to load nodes into primary memory.

With this brief sketch of B-Trees, we can now describe in more detail the R-Tree
structure. An R-Tree is a height-balanced tree, similar to a B-Tree, that stores n-
dimensional spatial objects in a dynamic structure that supports insert, delete, and
query operations. It also supports range queries for locating objects that overlap with
a target n-dimensional query. In this chapter, we describe the fundamental opera‐
tions that maintain R-Trees to ensure efficient execution of the core operations.

An R-Tree is a tree structure in which each node contains links to up to M different
children nodes. All information is stored by the leaf nodes, each of which can store
up to M different n-dimensional spatial objects. An R-Tree leaf node provides an
index into the actual repository that stores the objects themselves; the R-Tree only
stores the unique identifier for each object and the n-dimensional bounding box, I,
which is the smallest n-dimensional shape that contains the spatial object. In this
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presentation we assume two dimensions and these shapes are rectangles, but it can
naturally be extended to n dimensions based on the structure of the data.

There is another relevant constant, m ≤ ⌊M/2⌋, which defines the minimum num‐
ber of values stored by a leaf node or links stored by interior nodes in the R-Tree.
We summarize the R-Tree properties here:

• Every leaf node contains between m and M (inclusive) records [unless it is the
root].

• Every nonleaf node contains between m and M (inclusive) links to children
nodes [unless it is the root].

• For each entry (I, childi) in a nonleaf node, I is the smallest rectangle that spa‐
tially contains the rectangles in its children nodes.

• The root node has at least two children [unless it is a leaf].
• All leaves appear on the same level.

The R-Tree is a balanced structure that ensures the properties just listed. For conve‐
nience, the leaf level is considered level 0, and the level number of the root node is
the height of the tree. The R-Tree structure supports insertion, deletion, and query
in O(logm n).

The repository contains sample applications for investigating the behavior of R-
Trees. Figure 10-17 shows the dynamic behavior as a new rectangle 6 is added to the
R-Tree that contains M = 4 shapes. As you can see, there is no room for the new
rectangle, so the relevant leaf node R1 is split into two nodes, based on a metric that
seeks to minimize the area of the respective new nonleaf node, R2. Adding this
rectangle increases the overall height of the R-Tree by one since it creates a new
root, R3.

Figure 10-17. R-Tree insert example
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R-Tree Summary
Best, Average: O(logm n)     Worst: O(n)

add (R, rect)
  if R is empty then
    R = new RTree (rect)
  else
    leaf = chooseLeaf(rect)

    if leaf.count < M then 
      add rect to leaf
    else

      newLeaf = leaf.split(rect) 

      newNode = adjustTree (leaf, newLeaf) 
      if newNode != null then

        R = new RTree with old Root and newNode as children 
end

search (n, t)

  if n is a leaf then 
    return entry if n contains t otherwise False
  else

    foreach child c of n do 
      if c contains t then

        return search(c, t) 
end

range (n, t)

  if target wholly contains n's bounding box then 
    return all descendant rectangles
  else if n is a leaf
    return all entries that intersect t
  else
    result = null

    foreach child c of n do 
      if c overlaps t then
        result = union of result and range(c, t)
    return result

Entries are added to a leaf node if there is room.

Otherwise, M + 1 entries are divided among the old leaf and a new node.

Entries in path to root may need to be adjusted.

R-Tree might grow in height after an add.

Leaf nodes contain the actual entries.

Recursively search each child since regions may overlap.
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Once found the entry is returned.

Efficient operation for detecting membership.

May have to execute multiple recursive queries.

Input/Output
A two-dimensional R-Tree stores a collection of rectangular regions in the Cartesian
plane, each with its own (optional) unique identifier.

R-Tree operations can modify the state of the R-Tree (i.e., insert or delete) as well as
retrieve an individual rectangular region or a collection of regions.

Context
R-Trees were designed to index multidimensional information including geographi‐
cal structures or more abstract n-dimensional data, such as rectangles or polygons.
This is one of the few structures that offers excellent runtime performance even
when the information is too large to store in main memory. Traditional indexing
techniques are inherently one-dimensional and thus R-Tree structures are well-
suited for these domains.

The operations on an R-Tree include insertion and deletion, and there are two kinds
of queries. You can search for a specific rectangular region in the R-Tree or you can
determine the collection of rectangular regions that intersect a query rectangle.

Solution
The Python implementation in Example 10-8 associates an optional identifier with
each rectangle; this would be used to retrieve the actual spatial object from the data‐
base. We start with the RNode, which is the fundamental unit of an R-Tree. Each
RNode maintains a bounding region and an optional identifier. An RNode is a leaf if
node.level is zero. There are node.count children for an RNode and they are stored
in the node.children list. When adding a child RNode, the parent node.region
bounding box must be adjusted to include the newly added child.

Example 10-8. RNode implementation

class RNode:
  # Monotonically incrementing counter to generate identifiers
  counter = 0

  def __init__(self, M, rectangle = None, ident = None, level = 0):
    if rectangle:
      self.region = rectangle.copy()
    else:
      self.region = None
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    if ident is None:
      RNode.counter += 1
      self.id       = 'R' + str(RNode.counter)
    else:
      self.id       = ident

    self.children   = [None] * M
    self.level      = level
    self.count      = 0

  def addRNode(self, rNode):
    """Add previously computed RNode and adjust bounding region."""
    self.children[self.count] = rNode
    self.count += 1

    if self.region is None:
      self.region = rNode.region.copy()
    else:
      rectangle = rNode.region
      if rectangle.x_min < self.region.x_min:
        self.region.x_min = rectangle.x_min
      if rectangle.x_max > self.region.x_max:
        self.region.x_max = rectangle.x_max
      if rectangle.y_min < self.region.y_min:
        self.region.y_min = rectangle.y_min
      if rectangle.y_max > self.region.y_max:
        self.region.y_max = rectangle.y_max

With this base in place, Example 10-9 describes the RTree class and the method for
adding a rectangle to an R-Tree.

Example 10-9. RTree and corresponding add implementation

class RTree:
  def __init__(self, m=2, M=4):
    """Create empty R tree with (m=2, M=4) default values."""
    self.root = None
    self.m = m
    self.M = M

  def add(self, rectangle, ident = None):
    """Insert rectangle into proper location with (optional) identifier."""
    if self.root is None:
      self.root = RNode(self.M, rectangle, None)
      self.root.addEntry (self.M, rectangle, ident)
    else:
      # I1 [Find position for new record] Invoke ChooseLeaf to select
      # a leaf node L in which to place E. Path to leaf returned.
      path = self.root.chooseLeaf (rectangle, [self.root]);
      n = path[-1]
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      del path[-1]

      # I2 [Add record to leaf node] If L has room for another entry,
      # install E. Otherwise invoke SplitNode to obtain L and LL containing
      # E and all the old entries of L.
      newLeaf = None
      if n.count < self.M:
        n.addEntry (self.M, rectangle, ident)
      else:
        newLeaf = n.split(RNode(self.M, rectangle, ident, 0),self.m,self.M)

      # I3 [Propagate changes upwards] Invoke AdjustTree on L, also
      # passing LL if a split was performed.
      newNode = self.adjustTree (n, newLeaf, path)

      # I4 [Grow tree taller] If node split propagation caused the root
      # to split, create a new root whose children are the two
      # resulting nodes.
      if newNode:
        newRoot = RNode(self.M, level = newNode.level + 1)
        newRoot.addRNode (newNode)
        newRoot.addRNode (self.root)
        self.root = newRoot

The comments in Example 10-9 reflect the steps in the algorithm published in Gutt‐
man’s 1984 paper. Each RTree object records the configured m and M values and the
root RNode object of the tree. Adding the first rectangle to an empty RTree simply
creates the initial structure; thereafter, the add method finds an appropriate leaf
node into which to add the new rectangle. The computed path list returns the
ordered nodes from the root to the selected leaf node.

If there is enough room in the selected leaf node, the new rectangle is added to it
and the bounding box changes are propagated up to the root using the adjustTree
method. If, however, the selected leaf node is full, a newLeaf node is constructed and
the M + 1 entries are split between n and newLeaf using a strategy to minimize the
total area of the bounding boxes of these two nodes. In this case, the adjustTree
method must also propagate the new structure upward to the root, which might fur‐
ther cause other nodes to be split in similar fashion. If the original root node
self.root is split, then a new root RNode is created to be the parent of the original
root and the newly created RNode object. Thus an RTree grows by only one level
because existing nodes are split to make room for new entries.

Range queries can be performed as shown in Example 10-10. This implementation
is brief because of Python’s ability to write generator functions that behave like itera‐
tors. The recursive range method of RNode first checks whether the target rectangle
wholly contains a given RNode; if so, the rectangles of all descendant leaf nodes will
need to be included in the result. As a placeholder, a tuple (self, 0, True) is
returned; the invoking function can retrieve all of these regions using a leafOrder
generator defined by RNode. Otherwise, for nonleaf nodes, the function recursively
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yields those rectangles that are found in the descendants whose bounding rectangle
intersects the target rectangle. Rectangles in leaf nodes are returned as (rectangle,
id, False) if the target rectangle overlaps their bounding boxes.

Example 10-10. RTree/RNode implementation of Range Query

class RNode:
  def range (self, target):
    """Return generator (node,0,True) or (rect,id,False)
 of all qualifying identifiers overlapping target."""

    # Wholly contained for all interior nodes? Return entire node.
    if target.containsRegion (self.region):
      yield (self, 0, True)
    else:
      # check leaves and recurse
      if self.level == 0:
        for idx in range(self.count):
          if target.overlaps (self.children[idx].region):
            yield (self.children[idx].region, self.children[idx].id, False)
      else:
        for idx in range(self.count):
          if self.children[idx].region.overlaps (target):
            for triple in self.children[idx].range (target):
              yield triple

class RTree:
  def range (self, target):
    """Return generator of all qualifying (node,0,True) or
 (rect,id,False) overlapping target."""
    if self.root:
      return self.root.range (target)
    else:
      return None

Searching for an individual rectangle has the same structure as the code in
Example 10-10; only the RNode search function is shown in Example 10-11. This
function returns the rectangle and the optional identifier used when inserting the
rectangle into the RTree.

Example 10-11. RNode implementation of search query

class RNode:
  def search (self, target):
    """Return (rectangle,id) if node contains target rectangle."""
    if self.level == 0:
      for idx in range(self.count):
        if target == self.children[idx].region:
          return (self.children[idx].region, self.children[idx].id)
    elif self.region.containsRegion (target):

318 | Chapter 10: Spatial Tree Structures



      for idx in range(self.count):
        if self.children[idx].region.containsRegion (target):
          rc = self.children[idx].search(target)
          if rc:
            return rc
return None

To complete the implementation of R-Trees, we need the ability to delete a rectangle
that exists in the tree. While the add method had to split nodes that were too full,
the remove method must process nodes that have too few children, given the
minimum number of children nodes, m. The key idea is that once a rectangle is
removed from the R-Tree, any of the nodes from its parent node to the root might
become “under-full.” The implementation shown in Example 10-12 handles this
using a helper method, condenseTree, which returns a list of “orphaned” nodes
with fewer than m children; these values are reinserted into the R-Tree once the
remove request completes.

Example 10-12. RNode implementation of remove operation

class RTree:
  def remove(self, rectangle):
    """Remove rectangle value from R Tree."""
    if self.root is None:
      return False

    # D1 [Find node containing record] Invoke FindLeaf to locate
    # the leaf node n containing R. Stop if record not found.
    path = self.root.findLeaf (rectangle, [self.root]);
    if path is None:
      return False

    leaf = path[-1]
    del path[-1]
    parent = path[-1]
    del path[-1]

    # D2 [Delete record.] Remove E from n
    parent.removeRNode (leaf)

    # D3 [Propagate changes] Invoke condenseTree on parent
    if parent == self.root:
      self.root.adjustRegion()
    else:
      parent,Q = parent.condenseTree (path, self.m, self.M)
      self.root.adjustRegion()

      # CT6 [Reinsert orphaned entries] Reinsert all entries
      # of nodes in set Q.
      for n in Q:
        for rect,ident in n.leafOrder():
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          self.add (rect, ident)

      # D4 [Shorten tree.] If the root node has only one child after
      # the tree has been adjusted, make the child the new root.
      while self.root.count == 1 and self.root.level > 0:
        self.root = self.root.children[0]
      if self.root.count == 0:
        self.root = None

      return True

Analysis
The R-Tree structure derives its efficiency by its ability to balance itself when rec‐
tangles are inserted. Since all rectangles are stored in leaf nodes at the same height in
the R-Tree, the interior nodes represent the bookkeeping structure. Parameters m
and M determine the details of the structure, but the overall guarantee is that the
height of the tree will be O(log n) where n is the number of nodes in the R-Tree. The
split method distributes rectangles among two nodes using a heuristic that minimi‐
zes the total area of the enclosing bounding boxes of these two nodes; there have
also been other heuristics proposed in the literature.

The search performance of R-Tree methods depends on the number of rectangles in
the R-Tree and the density of those rectangles, or the average number of rectangles
that contain a given point. Given n rectangles formed from random coordinates in
the unit square, about 10% of them intersect a random point, which means the
search must investigate multiple subchildren in trying to locate an individual
rectangle. Specifically, it must investigate every subchild whose region overlaps the
target search query. With low-density data sets, searching an R-Tree becomes more
efficient.

Inserting rectangles into an R-Tree may cause multiple nodes to be split, which is a
costly operation. Similarly, when removing rectangles from an R-Tree, multiple
orphaned nodes must have their rectangles reinserted into the tree. Deleting rectan‐
gles is more efficient than searching because while looking for the rectangles to
delete the recursive calls are limited to subchildren that wholly contain the target
rectangle being deleted.

Table 10-4 shows performance results on two rectangle data sets containing 8,100
rectangles. In Tables 10-4 through 10-6, we show different performance results for
varying values of m and M (recall that m ≤ ⌊M/2⌋). In the sparse set, the rectangles
all have the same size but have no overlaps. In the dense set, the rectangles are
formed from two random points drawn from the unit square. The entries record the
total time to construct the R-Tree from the rectangles. The build time is slightly
higher for the dense set because of the increased number of nodes that have to be
split when inserting rectangles.

Table 10-5 shows the total time to search for all rectangles in the R-Tree. The dense
data set is about 50 times slower than the sparse set. Additionally, it shows a
marginal benefit of having the minimum number of children nodes to be m = 2.
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Table 10-6 contains the corresponding performance for deleting all rectangles in the
R-Tree. The performance spikes in the dense tree set are likely the result of the small
size of the random data set.

Table 10-4. R-Tree-build performance on dense and sparse data sets

Dense Sparse

M m = 2 m = 3 m = 4 m = 5 m = 6 m = 2 m = 3 m = 4 m = 5 m = 6

4 1.32 1.36

5 1.26 1.22

6 1.23 1.23 1.2 1.24

7 1.21 1.21 1.21 1.18

8 1.24 1.21 1.19 1.21 1.2 1.19

9 1.23 1.25 1.25 1.2 1.19 1.18

10 1.35 1.25 1.25 1.25 1.18 1.18 1.18 1.22

11 1.3 1.34 1.27 1.24 1.18 1.21 1.22 1.22

12 1.3 1.31 1.24 1.28 1.22 1.17 1.21 1.2 1.2 1.25

Table 10-5. R-Tree search performance on dense and sparse data sets

Dense Sparse

M m = 2 m = 3 m = 4 m = 5 m = 6 m = 2 m = 3 m = 4 m = 5 m = 6

4 25.16 0.45

5 21.73 0.48

6 20.98 21.66 0.41 0.39

7 20.45 20.93 0.38 0.46

8 20.68 20.19 21.18 0.42 0.43 0.39

9 20.27 21.06 20.32 0.44 0.4 0.39

10 20.54 20.12 20.49 20.57 0.38 0.41 0.39 0.47

11 20.62 20.64 19.85 19.75 0.38 0.35 0.42 0.42

12 19.7 20.55 19.47 20.49 21.21 0.39 0.4 0.42 0.43 0.39
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Table 10-6. R-Tree delete performance on dense and sparse data sets

Dense Sparse

M m = 2 m = 3 m = 4 m = 5 m = 6 m = 2 m = 3 m = 4 m = 5 m = 6

4 19.56 4.08

5 13.16 2.51

6 11.25 18.23 1.76 4.81

7 12.58 11.19 1.56 3.7

8 8.31 9.87 15.09 1.39 2.81 4.96

9 8.78 11.31 14.01 1.23 2.05 3.39

10 12.45 8.45 9.59 18.34 1.08 1.8 3.07 5.43

11 8.09 7.56 8.68 12.28 1.13 1.66 2.51 4.17

12 8.91 8.25 11.26 14.8 15.82 1.04 1.52 2.18 3.14 5.91

We now fix M = 4 and m = 2 and compute the performance of search and deletion
as n increases in size. In general, higher values of M are beneficial when there are
lots of deletions, since it reduces the number of values to be reinserted into the R-
Tree because of under-full nodes, but the true behavior is based on the data and the
balancing approach used when splitting nodes. The results are shown in Table 10-7.

Table 10-7. R-Tree search and delete performance (in milliseconds) on sparse
data set as n doubles

n Search Delete

128 0.033 0.135

256 0.060 0.162

512 0.108 0.262

1,024 0.178 0.320

2,048 0.333 0.424

4,096 0.725 0.779

8,192 1.487 1.306

16,384 3.638 2.518

32,768 7.965 3.980

65,536 16.996 10.051

131,072 33.985 15.115
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11
Emerging Algorithm Categories

Earlier chapters described algorithms that solve common problems. Obviously,
you will encounter challenges in your programming career that do not fit into
any common category, so this chapter presents four algorithmic approaches to solv‐
ing problems.

Another change in this chapter is its focus on randomness and probability. These
were used in previous chapters when analyzing the average-case behavior of algo‐
rithms. Here the randomness can become an essential part of an algorithm. Indeed,
the probabilistic algorithms we describe are interesting alternatives to deterministic
algorithms. Running the same algorithm on the same input at two different times
may provide very different answers. Sometimes we will tolerate wrong answers or
even claims that no solution was found.

Variations on a Theme
The earlier algorithms in this book solve instances of a problem by giving an exact
answer on a sequential, deterministic computer. It is interesting to consider relaxing
these three assumptions:

Approximation algorithms
Instead of seeking an exact answer for a problem, accept solutions that are
close to, but not necessarily as good as, the true answer.

Parallel algorithms
Instead of being restricted to sequential computation, create multiple computa‐
tional processes to work simultaneously on subproblem instances.
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Probabilistic algorithms
Instead of computing the same result for a problem instance, use randomized
computations to compute an answer. When run multiple times, the answers
often converge on the true answer.

Approximation Algorithms
Approximation algorithms trade off accuracy for more efficient performance. As an
example where a “good enough” answer is sufficient, consider the Knapsack Prob‐
lem, which arises in a variety of computational domains. The goal is to determine
the items to add to a backpack that maximize the value of the entire backpack while
not exceeding some maximum weight, W. This problem, known as Knapsack 0/1,
can be solved using Dynamic Programming. For the Knapsack 0/1 problem,
you can only pack one instance of each item. A variation named Knapsack
Unbounded allows you to pack as many instances of a particular item that you
desire. In both cases, the algorithm must return the maximum value of the items
given space constraints.

Consider having the set of four items {4, 8, 9, 10} where each item’s cost in dollars is
the same value as its weight in pounds. Thus, the first item weighs 4 pounds and
costs $4. Assume the maximum weight you can pack is W = 33 pounds.

As you will recall, Dynamic Programming records the results of smaller subpro‐
blems to avoid recomputing them and combines solutions to these smaller prob‐
lems to solve the original problem. Table 11-1 records the partial results for
Knapsack 0/1 and each entry m[i][w] records the maximum value to be achieved by
allowing the first i items (the rows below) to be considered with a maximum com‐
bined weight of w (the columns below). The maximum value for given weight W
using up to four items as shown in the lower-right corner is $31. In this case, one
instance of each item is added to the backpack.

Table 11-1. Performance of Knapsack 0/1 on small set

… 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

2 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

3 13 13 13 13 17 17 17 17 21 21 21 21 21 21 21 21 21 21 21 21 21

4 13 14 14 14 17 18 19 19 21 22 23 23 23 23 27 27 27 27 31 31 31

For the Knapsack Unbounded variation, Table 11-2 records the entry m[w], which
represents the maximum value attained for weight w if you are allowed to pack any
number of instances of each item. The maximum value for given weight W as
shown in the rightmost entry below is $33. In this case, there are six instances of the
four-pound item and one nine-pound item.
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Table 11-2. Performance of Knapsack Unbounded on small set

… 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

… 13 14 14 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Knapsack 0/1 Summary
Best, Average, Worst: O(n*W)

Knapsack 0/1 (weights, values, W)
  n = number of items

  m = empty (n+1) x (W+1) matrix 
  for i=1 to n do
    for j=0 to W do

      if weights[i-1] <= j then 
        remaining = j - weights[i-1]
        m[i][j] = max(m[i-1][j], m[i-1][remaining] + values[i-1])
      else

        m[i][j] = m[i-1][j] 

  return m[n][W] 
end

Knapsack unbounded(weights, values, W)
  n = number of items

  m = empty (W+1) vector 
  for j=1 to W+1 do
    best = m[j-1]
    for i=0 to n-1 do
      remaining = j - weights[i]
      if remaining >= 0 and m[remaining] + values[i] > best then
        best = m[remaining] + values[i]
      m[j] = best
  return m[W]

m[i][j] records maximum value using first i items without exceeding weight j.

Can we increase value by adding item i – 1 to previous solution with weight
(j – that item’s weight)?

Item i – 1 exceeds weight limit and thus can’t improve solution.

Return computed best value.

For unbounded, m[j] records maximum value without exceeding weight j.

Input/Output
You are given a set of items (each with an integer weight and value) and a maximum
weight, W. The problem is to determine which items to pack into the knapsack so
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the total weight is less than or equal to W and the total value of the packed items is
as large as possible.

Context
This is a type of resource allocation problem with constraints that is common in
computer science, mathematics, and economics. It has been studied extensively for
over a century and has numerous variations. Often you need to know the actual
selection of items, not just the maximum value, so the solution must also return the
items selected to put into the knapsack.

Solution
We use Dynamic Programming, which works by storing the results of simpler
subproblems. For Knapsack 0/1, the two-dimensional matrix m[i][j] records the
result of the maximum value using the first i items without exceeding weight j. The
structure of the solution in Example 11-1 matches the expected double loops of
Dynamic Programming.

Example 11-1. Python implementation of Knapsack 0/1

class Item:
  def __init__(self, value, weight):
    """Create item with given value and weight."""
    self.value = value
    self.weight = weight

def knapsack_01 (items, W):
  """
  Compute 0/1 knapsack solution (just one of each item is available)
  for set of items with corresponding weights and values. Return total
  weight and selection of items.
  """
  n = len(items)
  m = [None] * (n+1)
  for i in range(n+1):
    m[i] = [0] * (W+1)

  for i in range(1,n+1):
    for j in range(W+1):
      if items[i-1].weight <= j:
        valueWithItem = m[i-1][j-items[i-1].weight] + items[i-1].value
        m[i][j] = max(m[i-1][j], valueWithItem)
      else:
        m[i][j] = m[i-1][j]

  selections = [0] * n
  i = n
  w = W
  while i > 0 and w >= 0:
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    if m[i][w] != m[i-1][w]:
      selections[i-1] = 1
      w -= items[i-1].weight
    i -= 1

  return (m[n][W], selections)

This code follows the Dynamic Programming structure by computing each subpro‐
blem in order. Once the nested for loops compute the maximum value, m[n][W],
the subsequent while loop shows how to recover the actual items selected by “walk‐
ing” over the m matrix. It starts at the lower righthand corner, m[n][W], and deter‐
mines whether the ith item was selected, based on whether m[i][w] is different from
m[i-1][w]. If this is the case, it records the selection and then moves left in m by
removing the weight of i and continuing until it hits the first row (no more items)
or the left column (no more weight); otherwise it tries the previous item.

The Knapsack Unbounded problem uses a one-dimensional vector m[j] to record
the result of the maximum value not exceeding weight j. Its Python implementation
is shown in Example 11-2.

Example 11-2. Python implementation of Knapsack unbounded

def knapsack_unbounded (items, W):
  """
  Compute unbounded knapsack solution (any number of each item is
  available) for set of items with corresponding weights and values.
  Return total weight and selection of items.
  """
  n = len(items)
  progress = [0] * (W+1)
  progress[0] = -1
  m = [0] * (W + 1)
  for j in range(1, W+1):
    progress[j] = progress[j-1]
    best = m[j-1]
    for i in range(n):
      remaining = j - items[i].weight
      if remaining >= 0 and m[remaining] + items[i].value > best:
        best = m[remaining] + items[i].value
        progress[j] = i
      m[j] = best

  selections = [0] * n
  i = n
  w = W
  while w >= 0:
    choice = progress[w]
    if choice == -1:
      break
    selections[choice] += 1
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    w -= items[progress[w]].weight

  return (m[W], selections)

Analysis
These solutions are not O(n) as one might expect, because that would require the
overall execution to be bounded by c*n, where c is a constant for sufficiently large n.
The execution time depends on W as well. That is, in both cases, the solution is
O(n*W), as clearly shown by the nested for loops. Recovering the selections is
O(n), so this doesn’t change the overall performance.

Why does this observation matter? In Knapsack 0/1, when W is much larger than
the weights of the individual items, the algorithm must repeatedly perform wasted
iterations, because each item is only chosen once. There are similar inefficiencies for
Knapsack Unbounded.

In 1957, George Dantzig proposed an approximate solution to Knapsack Unboun‐
ded, shown in Example 11-3. The intuition behind this approximation is that you
should first insert items into the knapsack that maximize the value-to-weight ratio.
In fact, this approach is guaranteed to find an approximation that is no worse than
half of the maximum value that would have been found by Dynamic Programming.
In practice, the results are actually quite close to the real value, and the code is
noticeably faster.

Example 11-3. Python implementation of Knapsack unbounded
approximation

class ApproximateItem(Item):
  """
  Extends Item by storing the normalized value and the original position
  of the item before sorting.
  """
  def __init__(self, item, idx):
    Item.__init__(self, item.value, item.weight)
    self.normalizedValue = item.value/item.weight
    self.index = idx

def knapsack_approximate (items, W):
  """Compute approximation to knapsack problem using Dantzig approach."""
  approxItems = []
  n = len(items)
  for idx in range(n):
    approxItems.append (ApproximateItem(items[idx], idx))
  approxItems.sort (key=lambda x:x.normalizedValue, reverse=True)

  selections = [0] * n
  w = W
  total = 0
  for idx in range(n):
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    item = approxItems[idx]

    if w == 0:
      break

    # find out how many fit
    numAdd = w // item.weight
    if numAdd > 0:
      selections[item.index] += numAdd
      w -= numAdd * item.weight
      total += numAdd * item.value

  return (total, selections)

The implementation iterates over the items in reverse order by their normalized
value (i.e., the ratio of value to weight). The cost of this algorithm is O(n log n)
because it must sort the items first.

Returning to the original set of four items {4, 8, 9, 10} in our earlier example,
observe that the ratio of value to weight is 1.0 for each item, which means they
are all “equivalent” in importance according to the algorithm. For the given weight
W = 33, the approximation chooses to pack eight instances of the item weighing
four pounds, which results in a total value of $32. It is interesting that all three
algorithms came up with a different value given the same items and overall weight
constraint.

The following table compares the performance of the Knapsack Unbounded
Approximation with Knapsack Unbounded as W grows in size. Each of the items
in the set of n = 53 items has a different weight and each item’s value is set to its
weight. The weights range from 103 to 407. As you can see, as the size of W doubles,
the time to execute Knapsack Unbounded also doubles, because of its O(n*W) per‐
formance. However, the performance of Knapsack Approximate doesn’t change as
W gets larger because its performance is determined only by O(n log n).

Reviewing the final two columns, you can see that for W = 175, the approximate
solution is 60% of the actual answer. As W increases, the approximate solution con‐
verges to be closer to the actual answer. Also, the approximation algorithm is almost
1,000 times faster.

Table 11-3. Performance of Knapsack variations

W Knapsack
Unbounded
Time

Knapsack
Approximate
Time

Actual
Answer

Approximate
Answer

175 0.00256 0.00011 175 103

351 0.00628 0.00011 351 309

703 0.01610 0.00012 703 618

1407 0.03491 0.00012 1407 1339
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W Knapsack
Unbounded
Time

Knapsack
Approximate
Time

Actual
Answer

Approximate
Answer

2815 0.07320 0.00011 2815 2781

5631 0.14937 0.00012 5631 5562

11263 0.30195 0.00012 11263 11227

22527 0.60880 0.00013 22527 22454

45055 1.21654 0.00012 45055 45011

Parallel Algorithms
Parallel algorithms take advantage of existing computational resources by creating
and managing different threads of execution.

Quicksort, presented in Chapter 4, can be implemented in Java as shown in
Example 11-4, assuming the existence of a partition function to divide the original
array into two subarrays based on a pivot value. As you recall from Chapter 4,
values to the left of pivotIndex are ≤ the pivot value while values to the right of
pivotIndex are ≥ the pivot value.

Example 11-4. Quicksort implementation in Java

public class MultiThreadQuickSort<E extends Comparable<E>> {

  final E[]    ar;  /** Elements to be sorted. */
  IPivotIndex  pi;  /** Partition function. */

  /** Construct an instance to solve quicksort. */
  public MultiThreadQuickSort (E ar[]) {
    this.ar = ar;
  }

  /** Set the partition method. */
  public void setPivotMethod (IPivotIndex ipi) { this.pi = ipi; }

  /** Single-thread sort of ar[left,right]. */
  public void qsortSingle (int left, int right) {
    if (right <= left) { return; }

    int pivotIndex = pi.selectPivotIndex (ar, left, right);
    pivotIndex = partition (left, right, pivotIndex);

    qsortSingle (left, pivotIndex-1);
    qsortSingle (pivotIndex+1, right);
  }
}
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The two subproblems qsortSingle (left, pivotIndex-1) and qsortSingle
(pivotIndex+1, right) are independent problems and, theoretically, can be solved
at the same time. The immediate question is how to use multiple threads to solve
this problem. You cannot simply spawn a helper thread with each recursive call
since that would overwhelm the resources of the operating system. Consider the
rewrite, qsort2, shown in Example 11-5:

Example 11-5. Multithreaded Java Quicksort implementation

/** Multi-thread sort of ar[left,right]. */
void qsort2 (int left, int right) {
  if (right <= left) { return; }

  int pivotIndex = pi.selectPivotIndex (ar, left, right);
  pivotIndex = partition (left, right, pivotIndex);

  qsortThread (left, pivotIndex-1);
  qsortThread (pivotIndex+1, right);
}

/**
 * Spawn thread to sort ar[left,right] or use existing thread
 * if problem size is too big or all helpers are being used.
 */
private void qsortThread (final int left, final int right) {
  // are all helper threads working OR is problem too big?
  // Continue with recursion if so.
  int n = right + 1 - left;
  if (helpersWorking == numThreads || n >= threshold) {
    qsort2 (left, right);
  } else {
    // otherwise, complete in separate thread
    synchronized (helpRequestedMutex) {
      helpersWorking++;
    }

    new Thread () {
      public void run () {
        // invoke single-thread qsort
        qsortSingle (left, right);

        synchronized (helpRequestedMutex) {
          helpersWorking--;
        }
      }
    }.start();
  }
}
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For each of the two qsortThread subproblems, there is a simple check to see
whether the primary thread should continue the recursive qsortThread function
call. The separate helper thread is dispatched to compute a subproblem only if a
thread is available and the size of the subproblem is smaller than the specified
threshold value. This logic is applied when sorting the left subarray as well as the
right subarray. The threshold value is computed by calling setThresholdRatio(r),
which sets the threshold problem size to be n/r where n is the number of elements
to be sorted. The default ratio is 5, which means a helper thread is only invoked on
subproblems that are smaller than 20% of the original problem size.

The helpersWorking class attribute stores the number of active helper threads.
Whenever a thread is spawned, the helpersWorking variable is incremented, and
the thread itself will decrement this same value on completion. Using the mutex
variable, helpRequestedMutex, and the ability in Java to synchronize a block of code
for exclusive access, this implementation safely updates the helpersWorking vari‐
able. qsort2 invokes the single-threaded qsortSingle method within its helper
threads. This ensures only the primary thread is responsible for spawning new
threads of computation.

For this design, helper threads cannot spawn additional helper threads. If this were
allowed to happen, the “first” helper thread would have to synchronize with these
“second” threads, so the “second” threads would only begin to execute after the
“first” helper thread had properly partitioned the array.

Figures 11-1 and 11-2 compare the Java single-helper solution against a single-
threaded solution sorting random integers from the range [0, 16777216]. We con‐
sider several parameters:

Size n of the array being sorted
This falls in the range {65,536 to 1,048,576}.

Threshold n/r
This determines the maximum size of the problem for which a helper thread is
spawned. We experimented with values of r in the range {1 to 20} and MAX‐
INT, which effectively denies using helper threads.

Number of helper threads available
We experimented with 0 to 9 helper threads.

Partition method to use
We tried both “select a random element” and “select the rightmost element.”

The parameter space thus amounts to 2,000 unique combinations of these parame‐
ters. In general, we found there is a noticeable performance slowdown of about 5%
in using the random number generator across all experiments, so we now focus only
on the “rightmost” partition method. In addition, for Quicksort, having more than
one helper thread available did not improve the performance, so we focus only on
having a single helper thread.
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Figure 11-1. Multithreaded Quicksort for varying n and r

Reading the graph from left to right, you can see that the first data point (r = 1)
reports the performance that tries to immediately begin using the helper thread,
while the last data point (r = 21) reports the result when no helper thread is ever
used. When we compute the speedup factor from time T1 to a smaller time T2, we
use the equation T1/T2. Simply using an extra thread shows a speedup factor of
about 1.3. This is a very nice return on investment for a small programming change,
as shown in Table 11-4.
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Table 11-4. Speedup of having one helper thread for (r = 1) versus
(r = MAXINT)

n Speedup of Multi-
thread to no thread

65,536 1.24

131,072 1.37

262,144 1.35

524,288 1.37

1,048,576 1.31

Returning to Figure 11-1, you can see that the best improvement occurs near where
r = 2. There is a built-in overhead to using threads, and we shouldn’t automatically
dispatch a new thread of execution without some assurance that the primary thread
will not have to wait and block until the helper thread completes its execution. These
results will differ based on the computing platform used.

In many cases, the speedup is affected by the number of CPUs on the computing
platform. Figure 11-2 contains the speedup tables on two different computing plat‐
forms—a dual-core CPU and a quad-core CPU. Each row represents the potential
number of available threads while each column represents a threshold value r. The
total number of elements sorted is fixed at n = 1,048,576. The quad-core results
demonstrate the effectiveness of allowing multiple threads, achieving a speedup of
1.5; the same cannot be said of the dual-core execution, whose performance increa‐
ses by no more than 5% when allowing multiple threads.

Research in speedup factors for parallel algorithms shows there are inherent limita‐
tions to how much extra threading or extra processing will actually help a specific
algorithmic implementation. Here the multithreaded Quicksort implementation
achieves a nice speedup factor because the individual subproblems of recursive
Quicksort are entirely independent; there will be no contention for shared resour‐
ces by the multiple threads. If other problems share this same characteristic, they
should also be able to benefit from multithreading.

Probabilistic Algorithms
A probabilistic algorithm uses a stream of random bits (i.e., random numbers) as
part of the process for computing an answer, so you will get different results when
running the algorithm on the same problem instance. Often, assuming access to a
stream of random bits leads to algorithms that are faster than any current alterna‐
tives.

For practical purposes, we should be aware that streams of random bits are very dif‐
ficult to generate on deterministic computers. Though we may generate streams of
quasi-random bits that are virtually indistinguishable from streams of truly random
bits, the cost of generating these streams should not be ignored.
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Figure 11-2. Performance of multithreaded Quicksort with fixed n and varying
r and number of threads

Estimating the Size of a Set
As an example of the speedup that can be obtained in allowing probabilistic algo‐
rithms, assume we want to estimate the size of a set of n distinct objects (i.e.,
we want to estimate the value n by observing individual elements). It would be
straightforward to count all the objects, at a cost of O(n). Clearly this process is
guaranteed to yield an exact answer. But if an incorrect estimate of the value of n is
tolerable, assuming it could be computed more quickly, the algorithm described in
Example 11-6 is a faster alternative. This algorithm is similar to the mark-and-
recapture experiments biologists use to estimate the size of a spatially limited popu‐
lation of organisms. The approach here is to use a generator function that returns a
random individual in the population.

E
m

erg
ing

A
lg

o
rithm

C
ateg

o
ries

Probabilistic Algorithms | 337



Example 11-6. Implementation of probabilistic counting algorithm

def computeK(generator):
  """
  Compute estimate of using probabilistic counting algorithm.
  Doesn't know value of n, the size of the population.
  """
  seen = set()

  while True:
    item = generator()
    if item in seen:
      k = len(seen)
      return 2.0*k*k/math.pi
    else:
      seen.add(item)

Let’s start with some intuition. We must have the ability to pick random elements
from the set and mark them as being seen. Since we assume the set is finite, at some
point we must eventually select an element that we have seen before. The longer it
takes to choose a previously selected element, the larger the size of the original set
must be. In statistics, this behavior is known as “sampling with replacement” and
the expected number of selections, k, we can make until seeing a previously selected
element is

k = π * n/2

As long as the generator function returns an element that has already been seen
(which it must do because the population is finite) the while loop will terminate
after some number of selections, k. Once k is computed, rearrange the preceding
formula to compute an approximation of n. Clearly, the algorithm can never give
the exact value of n, because 2*k2/π can never be an integer, but this computation is
an unbiased estimate of n.

In Table 11-5 we show a sample run of the algorithm that records the results of per‐
forming the computation repeatedly for a number of trials, t = {32, 64, 128, 256,
512}. From these trials, the lowest and highest estimates were discarded, and the
average of the remaining t-2 trials is shown in each column.

Table 11-5. Results of probabilistic counting algorithm as number of trials
increase

n Average
of 30

Average
of 62

Average
of 126

Average
of 254

Average
of 510

1,024 1144 1065 1205 1084 1290

2,048 2247 1794 2708 2843 2543

4,096 3789 4297 5657 5384 5475
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n Average
of 30

Average
of 62

Average
of 126

Average
of 254

Average
of 510

8,192 9507 10369 10632 10517 9687

16,384 20776 18154 15617 20527 21812

32,768 39363 29553 40538 36094 39542

65,536 79889 81576 76091 85034 83102

131,072 145664 187087 146191 173928 174630

262,144 393848 297303 336110 368821 336936

524,288 766044 509939 598978 667082 718883

1,048,576 1366027 1242640 1455569 1364828 1256300

Because of the random nature of the trials, it is not at all guaranteed that the final
accurate result can be achieved simply by averaging over an increasing number of
independent random trials. Even increasing the number of trials does little to
improve the accuracy, but that misses the point; this probabilistic algorithm effi‐
ciently returns an estimate based on a small sample size.

Estimating the Size of a Search Tree
Mathematicians have long studied the 8-Queens Problem, which asks whether it is
possible to place eight queens on a chessboard so that no two queens threaten each
other. This was expanded to the more general problem of counting the number of
unique solutions to placing n nonthreatening queens on an n-by-n chessboard. No
one has yet been able to devise a way to mathematically compute this answer;
instead you can write a brute-force program that checks all possible board configu‐
rations to determine the answer. Table 11-6 contains some of the computed values
taken from the On-Line Encyclopedia of Integer Sequences. As you can see, the
number of solutions grows extremely rapidly.

Table 11-6. Known count of solutions for n-Queens Problem with our
computed estimates

n Actual number
of solutions

Estimation with T =
1,024 trials

Estimation with T =
8,192 trials

Estimation with T =
65,536 trials

1 1 1 1 1

2 0 0 0 0

3 0 0 0 0

4 2 2 2 2

5 10 10 10 10

6 4 5 4 4
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n Actual number
of solutions

Estimation with T =
1,024 trials

Estimation with T =
8,192 trials

Estimation with T =
65,536 trials

7 40 41 39 40

8 92 88 87 93

9 352 357 338 351

10 724 729 694 718

11 2,680 2,473 2,499 2,600

12 14,200 12,606 14,656 13,905

13 73,712 68,580 62,140 71,678

14 365,596 266,618 391,392 372,699

15 2,279,184 1,786,570 2,168,273 2,289,607

16 14,772,512 12,600,153 13,210,175 15,020,881

17 95,815,104 79,531,007 75,677,252 101,664,299

18 666,090,624 713,470,160 582,980,339 623,574,560

19 4,968,057,848 4,931,587,745 4,642,673,268 4,931,598,683

20 39,029,188,884 17,864,106,169 38,470,127,712 37,861,260,851

To count the number of exact solutions to the 4-Queens Problem, we expand a
search tree (shown in Figure 11-3) based on the fact that each solution will have one
queen on each row. Such an exhaustive elaboration of the search tree permits us to
see that there are two solutions to the 4-Queens Problem. Trying to compute the
number of solutions to the 19-Queens Problem is much harder because there are
4,968,057,848 nodes at level 19 of the search tree. It is simply prohibitively expen‐
sive to generate each and every solution.

However, what if you were interested only in approximating the number of solu‐
tions, or in other words, the number of potential board states on level n? Knuth
(1975) developed a novel alternative approach to estimate the size and shape of a
search tree. His method corresponds to taking a random walk down the search tree.
For the sake of brevity, we illustrate his technique for the 4-Queens Problem, but
clearly it could just as easily be applied to approximate the number of solutions to
the 19-Queens Problem. Instead of counting all possible solutions, create a single
board state containing n queens and estimate the overall count by totaling the
potential board states not followed, assuming each of these directions would be
equally productive.

Figure 11-4 demonstrates Knuth’s approach on a 4x4 chessboard. Each of the board
states has an associated estimate in a small circle for the number of board states in
the entire tree at that level. Starting with the root of the search tree (no queens
placed), each board state expands to a new level based on its number of children.
We will conduct a large number of random walks over this search tree, which will
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never be fully constructed during the process. In each walk we will select moves at
random until a solution is reached or no moves are available. By averaging the num‐
ber of solutions returned by each random walk, we can approximate the actual
count of states in the tree. Let’s perform two possible walks starting from the root
node at level 0:

• Choose the leftmost board state in the first level. Because there are four chil‐
dren, our best estimate for the total number of states at level 1 is 4. Now again,
choose the leftmost child from its two children, resulting in a board state on
level 2. From its perspective, assuming each of the other three children of the
root node are similarly productive, it estimates the total number of board states
on level 2 to be 4*2 = 8. However, at this point, there are no more possible
moves, so from its perspective, it assumes no other branch is productive, so it
estimates there are 0 board states at level 3 and the search terminates with no
solution found.

• Choose the second-to-left board state in the first level. Its best estimate for the
number of states at level 1 is 4. Now, in each of the subsequent levels there is
only one valid board state, which leads to the estimate of 4*1 = 4 for the num‐
ber of board states at each subsequent level, assuming all of the other original
paths were similarly productive. Upon reaching the lowest level, it estimates
there are four solutions in the entire tree.

Figure 11-3. Final solution for 4-Queens Problem with four rows extended
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Figure 11-4. Estimating number of solutions of 4-Queens Problem

Neither of these estimates is correct, and it is typical of this approach that different
walks lead to under- and overestimates of the actual count. However, if we perform
a large number of random walks, the average of the estimates will converge on the
value. Each estimate can be computed quickly, thus this refined (averaged) estimate
can also be computed quickly.

If you refer back to Table 11-6, we show the computed results from our implemen‐
tation for 1,024, 8,192, and 65,536 trials. No timing information is included, because
all results were computed in less than a minute. The final estimate for the 19-
Queens problem with T = 65,536 trials is within 3% of the actual answer. Indeed, all
of the estimates for T = 65,536 are within 5.8% of the actual answer. This algorithm
has the desirable property that the computed value is more accurate as more ran‐
dom trials are run. Example 11-7 shows the implementation in Java for a single esti‐
mate of the n-Queens problem.

Example 11-7. Implementation of Knuth’s randomized estimation of n-Queens
problem

/**
 * For an n-by-n board, store up to n nonthreatening queens and
 * search along the lines of Knuth's random walk. It is assumed the
 * queens are being added row by row starting from 0.
 */
public class Board {
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  boolean [][] board;   /** The board. */
  final int n;          /** board size. */

  /** Temporary store for last valid positions. */
  ArrayList<Integer> nextValidRowPositions = new ArrayList<Integer>();

  public Board (int n) {
    board = new boolean[n][n];
    this.n = n;
  }

  /** Start with row and work upwards to see if still valid. */
  private boolean valid (int row, int col) {
    // another queen in same column, left diagonal, or right diagonal?
    int d = 0;
    while (++d <= row) {
      if (board[row-d][col]) { return false; }
      if (col >= d && board[row-d][col-d]) { return false; }
      if (col+d < n && board[row-d][col+d]) { return false; }
    }
    return true; // OK
  }

  /**
   * Find out how many valid children states are found by trying to add
   * a queen to the given row. Returns a number from 0 to n.
   */
  public int numChildren (int row) {
    int count = 0;
    nextValidRowPositions.clear();
    for (int i = 0; i < n; i++) {
      board[row][i] = true;
      if (valid (row, i)) {
        count++;
        nextValidRowPositions.add (i);
      }
      board[row][i] = false;
    }

    return count;
  }

  /** If no board is available at this row then return false. */
  public boolean randomNextBoard (int r) {
    int sz = nextValidRowPositions.size();
    if (sz == 0) { return false; }

    // select one randomly
    int c = (int) (Math.random()*sz);
    board[r][nextValidRowPositions.get (c)] = true;
    return true;
  }
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}

public class SingleQuery {
  /** Generate table. */
  public static void main (String []args) {
    for (int i = 0; i < 100; i++) {
      System.out.println(i + ": " + estimate(19));
    }
  }

  public static long estimate (int n) {
    Board b = new Board(n);

    int r = 0;
    long lastEstimate = 1;
    while (r < n) {
      int numChildren = b.numChildren (r);

      // no more to go, so no solution found.
      if (!b.randomNextBoard (r)) {
        lastEstimate = 0;
        break;
      }

      // compute estimate based on ongoing tally and advance
      lastEstimate = lastEstimate*numChildren;
      r++;
    }

    return lastEstimate;
  }
}

References
Armstrong, J., Programming Erlang: Software for a Concurrent World. Second Edi‐
tion. Pragmatic Bookshelf, 2013.

Berman, K. and J. Paul, Algorithms: Sequential, Parallel, and Distributed. Course
Technology, 2004.

Christofides, N., “Worst-case analysis of a new heuristic for the traveling salesman
problem,” Report 388, Graduate School of Industrial Administration, CMU, 1976.

Knuth, D. E., “Estimating the efficiency of backtrack programs,” Mathematics of
Computation, 29(129): 121–136, 1975.

344 | Chapter 11: Emerging Algorithm Categories



12
Epilogue: Principles of Algorithms

While we have reached the end of this book, there is no limit to the amount of
information you can find on algorithms about which you’re interested. Indeed,
there is no end to the kind of problems to which you can apply the techniques pre‐
sented in this book.

We finally have the opportunity to step back and review the nearly three dozen
algorithms we described in detail and by example. We hope you agree that we have
accomplished what we set out to do. To show the breadth of material that we’ve cov‐
ered, we now summarize the principles behind the algorithms presented in this
book. In doing so, we can demonstrate the similarities of different algorithms that
were designed to solve different problems. Instead of simply summarizing each of
the previous chapters, we’ll end this book by focusing on key principles that were
instrumental in designing these algorithms in the first place. We also take this
opportunity to summarize the concepts used by each algorithm. Thus, we provide a
quick summary and make it possible to cross-index this book in terms of shared
concepts across different algorithms.

Know Your Data
This book discussed a variety of common actions you might need to perform on
some data. You might need to sort data to produce a specific ordering. You might
need to search through data to locate a specific piece of information. Your data may
be accessible in random access (where you can fetch any piece of information at any
time) or sequentially using an Iterator (where each element is generated one at a
time). Without specific knowledge about your data, it is only possible to recom‐
mend algorithms in the most general way.

Often properties about the input data have a significant impact. In Chapter 9, many
special cases can simply be eliminated if you know you are computing the intersec‐
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tions among line segments containing no vertical lines; similarly, computing the
Voronoi diagram is simplified if no two points share the same x or y coordinate.
Dijkstra’s Algorithm, found in Chapter 6, will run forever if a cycle exists whose
sum of all edge weights is negative. Make sure you understand the special cases and
assumptions of the algorithms you choose.

As we have argued, there is no single algorithm that consistently delivers the best
performance for all circumstances. Choose the most appropriate algorithm based
on your data as you become more familiar with the available options. Table 12-1
summarizes the results of the sorting algorithms presented in Chapter 4. Naturally
you will focus on the worst-case performance of each algorithm, but also pay atten‐
tion to the concepts that arise when implementing or using these algorithms.

Table 12-1. Sorting algorithms

Algorithm Best Average Worst Concepts Page

Bucket Sort n n n Hash “Bucket Sort” on page 74

Heap Sort n log n n log n n log n Recursion, Binary
Heap

“Heap Sort” on page 62

Insertion Sort n n2 n2 Greedy “Transposition Sorting” on page 57

Merge Sort n log n n log n n log n Recursion, Stable,
Divide and Conquer

“Merge Sort” on page 81

Quicksort n log n n log n n2 Recursion, Divide and
Conquer

“Partition-Based Sorting” on page 67

Selection Sort n2 n2 n2 Greedy “Selection Sort” on page 61

Decompose a Problem into Smaller Problems
When designing an efficient algorithm to solve a problem, it is helpful if the prob‐
lem can be decomposed into two (or more) smaller subproblems. It is no mistake
that Quicksort remains one of the most popular sorting algorithms. Even with the
well-documented special cases that cause problems, Quicksort offers the best
average-case for sorting large collections of information. Indeed, the very concept of
an O(n log n) algorithm is based on the ability to (a) decompose a problem of size n
into two subproblems of about n/2 in size, and (b) recombine the solution of the
two subproblems into a solution for the original problem. To design an O(n log n)
algorithm, it must be possible for both of these steps to execute in O(n) time.

Quicksort was the first in-place sorting algorithm to demonstrate O(n log n) perfor‐
mance. It succeeds by the novel (almost counterintuitive) approach for dividing the
problem into two halves, each of which can be solved recursively by applying
Quicksort to the smaller subproblems.

Problems often can be simply cut in half, leading to impressive performance sav‐
ings. Consider how Binary Search converts a problem of size n into a problem of
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size n/2. Binary Search takes advantage of the repetitive nature of the search task to
develop a recursive solution to the problem.

Sometimes a problem can be solved by dividing it into two subproblems without
resorting to recursion. Convex Hull Scan produces the final convex hull by con‐
structing and merging together two partial hulls (the upper and lower).

Sometimes a problem can be decomposed into the repeated iteration of a different
(seemingly unconnected) smaller problem over the same input data. Ford–Fulker‐
son computes the maximum flow in a flow network by repeatedly locating an aug‐
menting path to which flow can be added. Eventually, no augmenting paths are
possible and the original solution is solved. Selection Sort repeatedly locates the
maximum value in an array and swaps it with the rightmost element in the array;
upon completing n iterations, the array is sorted. Similarly, Heap Sort repeatedly
swaps the largest element in the heap with its proper location in the array.

Observe that Dynamic Programming decomposes problems into smaller problems,
but its overall behavior is typically O(n2) or O(n3) because the smaller problems are
typically just one size smaller than the original problem, rather than half its size.

Table 12-2 contains a comparison of the searching algorithms discussed in Chapter
5. These algorithms offer different approaches to answer the fundamental question
of membership in a collection. In analyzing their performance, we used a technique
to amortize the costs of a series of operations, which allows us to accurately charac‐
terize the average performance given a random search query.

Table 12-2. Searching algorithms

Algorithm Best Average Worst Concepts Page

AVL Binary Search Tree 1 log n log n Binary Tree, Balanced “Binary Search Tree” on page 119

Sequential Search 1 n n Brute Force “Sequential Search” on page 92

Binary Search 1 log n log n Divide and Conquer “Binary Search” on page 95

Bloom Filter k k k False Positive “Bloom Filter” on page 114

Hash-Based Search 1 1 n Hash “Hash-Based Search” on page 99

Binary Search Tree 1 log n n Binary Tree “Binary Search Tree” on page 119

Choose the Right Data Structure
The famed algorithm designer Robert Tarjan was once quoted as saying that any
problem can be solved in O(n log n) time with the right data structure. Many algo‐
rithms need to use a priority queue to store partial progress and direct future com‐
putations. One of the most common means of implementing a priority queue is
through a binary heap, which allows for O(log n) behavior for removing the element
with lowest priority from the priority queue. However, a binary heap offers no abil‐
ity to determine whether it contains a specific element. We expanded on this very
point in the discussion of LineSweep (Chapter 9). This algorithm can provide
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O(n log n) performance because it uses an augmented binary tree to implement the
priority queue and still provides O(log n) performance for removing the minimum
element. Another way to state this principle is to avoid selecting an inappropriate
data structure that will prevent an algorithm from achieving its best performance.

In Chapter 6, we showed when to use an adjacency list or an adjacency matrix to
represent a graph, based on whether the graph was sparse or dense. This single deci‐
sion has the greatest impact on the performance of these algorithms. Table 12-3
shows the graph algorithms discussed in Chapter 6.

Table 12-3. Graph algorithms

Algorithm Best Average Worst Concepts Page

Bellman-
Ford
Algorithm

V*E V*E V*E Weighted Directed
Graph, Overflow

“All-Pairs Shortest
Path” on page
159

Breadth-First
Search

V + E V + E V + E Graph, Queue “Breadth-First
Search” on page
143

Depth-First
Search

V + E V + E V + E Graph, Recursion,
Backtracking

“Depth-First
Search” on page
137

Dijkstra’s
Algorithm
PQ

(V + E) log V (V + E) log V (V + E) log V Weighted Directed
Graph, Priority
Queue, Overflow

“Single-Source
Shortest Path” on
page 147

Dijkstra’s
Algorithm
DG

V2 + E V2 + E V2 + E Weighted Directed
Graph, Overflow

“Single-Source
Shortest Path” on
page 147

Floyd–
Warshall
Algorithm

V3 V3 V3 Dynamic
Programming,
Weighted Directed
Graph, Overflow

“All-Pairs Shortest
Path” on page
159

Prim’s
Algorithm

(V + E) log V (V + E) log V (V + E) log V Weighted Graph,
Binary Heap,
Priority Queue,
Greedy

“Minimum
Spanning Tree
Algorithms” on
page 163

When working with complex n-dimensional data, you need more complicated
recursive structures to store the data. Chapter 10 describes sophisticated spatial tree
structures to efficiently support standard search queries as well as more complicated
range queries. These structures were carefully designed by extending binary trees,
the fundamental recursive data structure in computer science.

348 | Chapter 12: Epilogue: Principles of Algorithms



Make the Space versus Time Trade-Off
Many of the computations carried out by the algorithms are optimized by storing
information that reflects the results of past computations. Prim’s Algorithm for
computing the minimum spanning tree for a graph uses a priority queue to store
the unvisited vertices in order of their shortest distance to an initial vertex s. During
a key step in the algorithm, we must determine whether a given vertex has already
been visited. Because the binary heap implementation of the priority queue fails to
provide this operation, a separate Boolean array records the status of each vertex. In
the same algorithm, another array stores the computed distances to avoid having to
search again through the priority queue. This extra storage on the order of O(n) is
required to ensure the efficient implementation of the algorithm. In most situations,
as long as the overhead is O(n), you are going to be safe.

Sometimes an entire computation can be cached so it never needs to be recompu‐
ted. In Chapter 6, we discussed how the hash function for the java.lang.String
class stores the computed hash value to speed up its performance.

Sometimes the nature of the input set demands a large amount of storage, such as
the dense graphs described in Chapter 6. By using a two-dimensional matrix to
store the edge information—rather than using simple adjacency lists—certain algo‐
rithms exhibit reasonable performance. You may also note that for undirected
graphs, the algorithms can be simplified by having twice as much storage and use a
two-dimensional matrix to store information for edgeInfo[i][j] as well as edge
Info[j][i]. It would be possible to eliminate this extra information if we always
queried for edgeInfo[i][j] using i ≤ j, but this would further complicate every
algorithm that simply desired to know whether edge (i, j) exists.

Sometimes an algorithm is unable to operate without some higher-than-expected
storage. Bucket Sort can sort in linear time simply by storing up to O(n) extra stor‐
age, if the input set is uniformly distributed. Given that today’s modern computers
often have very large random access memory present, you should consider Bucket
Sort for uniform data even though its memory requirements are so high.

Table 12-4 shows the spatial tree algorithms discussed in Chapter 10.

Table 12-4. Spatial Tree algorithms

Algorithm Best Average Worst Concepts Page

Nearest Neighbor
Query

log n log n n k-d tree, Recursion “Nearest Neighbor Summary” on
page 290

Quadtree log n log n log n Quadtree “Quadtree” on page 286

Range Queries n1-1/d + r n1-1/d + r n k-d tree, Recursion “Range Query” on page 298

R-Tree log n log n log n R-Tree “R-Tree” on page 287
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Construct a Search
Early pioneers in the field of artificial intelligence (AI) were often characterized as
trying to solve problems for which no known solution existed. One of the most
common approaches to solving problems was to convert the problem into a search
over a very large graph. We dedicated an entire chapter to this approach because it is
an important and general technique for solving numerous problems. But be careful
to apply it only when no other computational alternative is available! You could use
the path-finding approach to discover a sequence of element transpositions that
starts from an unsorted array (the initial node) and produces a sorted array (the
goal node), but you shouldn’t use an algorithm with exponential behavior because
numerous O(n log n) algorithms exist to sort data.

Table 12-5 shows the path–finding algorithms discussed in Chapter 7. These all
exhibit exponential performance, but these are still the preferred approach for
implementing intelligent game-playing programs. While these algorithms identify
the structure for finding a solution, they succeed because of sophisticated heuristics
that truly make the search process intelligent.

Table 12-5. Path finding in AI

Algorithm Best Average Worst Concepts Page

Depth-First
Search

b*d bd bd Stack, Set, Backtracking “Depth-First Search” on page
192

Breadth-First
Search

bd bd bd Queue, Set “Breadth-First Search” on page
198

A*Search b*d bd bd Priority Queue, Set,
Heuristics

“A*Search” on page 201

Minimax bply bply bply Recursion, Backtracking,
Brute Force

“Minimax” on page 174

NegMax bply bply bply Recursion, Backtracking,
Brute Force

“NegMax” on page 180

AlphaBeta bply/2 bply/2 bply Recursion, Backtracking,
Heuristics

“AlphaBeta” on page 183

Reduce Your Problem to Another Problem
Problem reduction is a fundamental approach used by computer scientists and
mathematicians to solve problems. As a simple example, suppose you wanted to
locate the fourth largest element in a list. Instead of writing this special-purpose
code, you could use any sorting algorithm to sort the list and then return the fourth
element in the sorted list. Using this approach, you have defined an algorithm
whose performance time is O(n log n), although this is not the most efficient way to
solve the problem.
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When using Fortune Sweep to compute the Voronoi diagram, the convex hull can
be readily computed by finding those points that share an infinite Voronoi edge
within their polygons. In this regard, the algorithm computes more information
than necessary, but the output can be used for a number of interesting problems,
such as computing a planar triangulation of the points in the collection.

Chapter 8 presented a set of problems that all seemed related, but there didn’t seem
to be any easy way to tie them all together. It is possible to reduce all of these prob‐
lems to linear programming (LP) and use commercially available software packages,
such as Maple, to compute solutions. However, the reductions are complicated, and
the general-purpose algorithms used to solve LP problems can be outperformed,
often significantly, by the Ford–Fulkerson family of algorithms. We show in Chap‐
ter 8 how to solve a single problem type, namely computing the minimum-cost
maximum flow in a flow network. With this algorithm in hand, the five other prob‐
lems are immediately solved. Table 12-6 shows the network flow algorithms
described in Chapter 8.

Table 12-6. Network flow algorithms

Algorithm Best Average Worst Concepts Page

Ford–Fulkerson E*mf E*mf E*mf Weighted Directed Graph,
Greedy

“Maximum Flow” on page 220

Edmonds–Karp V*E2 V*E2 V*E2 Weighted Directed Graph,
Greedy

“Maximum Flow” on page 220

Writing Algorithms Is Hard—Testing Algorithms Is
Harder
Because the algorithms we describe are predominantly deterministic (except for
those from Chapter 11), it was rather straightforward to develop test cases to ensure
they behaved properly. In Chapter 7, we began to encounter difficulties because we
were using path-finding algorithms to locate potential solutions that we did not
know in advance. For example, although it was straightforward to write test cases to
determine whether the GoodEvaluator heuristic was working properly for the 8-
puzzle, the only way to test an A*Search using that heuristic is to invoke the search
and manually inspect the explored tree to validate that the proper move was
selected. Thus, testing A*Search is complicated by having to test the algorithm in
the context of a specific problem and heuristic. We have extensive test cases for the
path-finding algorithms, but in many cases they exist only to ensure a reasonable
move was selected (for either game or search trees), rather than to ensure a specific
move was selected.

Testing the algorithms in Chapter 9 was further complicated because of floating-
point computations. Consider our approach to test Convex Hull Scan. The original
idea was to execute the brute-force Slow Hull algorithm, whose performance was
O(n4), and compare its output with the output from Andrew’s Convex Hull Scan.

E
p

ilo
g

ue

Writing Algorithms Is Hard—Testing Algorithms Is Harder | 351



During our extensive testing, we randomly generated two-dimensional data sets
uniformly drawn from the [0, 1] unit square. However, when the data sets grew suf‐
ficiently large, we invariably encountered situations where the results of the two
algorithms were different. Was there a subtle defect exposed by the data, or was
something else at work? We eventually discovered that the floating-point arithmetic
used by Slow Hull produced slightly (ever so slightly) different results when com‐
pared with Convex Hull Scan. Was this just a fluke? Unfortunately, no. We also
noticed that the LineSweep algorithm produced slightly different results when com‐
pared with the Brute-Force Intersection algorithm.

Which algorithm produced the “right” result? It’s not that simple, as using floating-
point values led us to develop a consistent notion of comparing floating-point val‐
ues. Specifically, we (somewhat) arbitrarily defined FloatingPoint.epsilon to be
the threshold value below which it becomes impossible to discern differences
between two numbers. When the resulting computations lead to values near this
threshold (which we set to 10−9), unexpected behavior would often occur. Eliminat‐
ing the threshold entirely won’t solve the problem, either. We ultimately resorted to
statistically checking the results of these algorithms, rather than seeking absolute
and definitive answers for all cases.

Table 12-7 summarizes the algorithms presented in Chapter 9. Each algorithm
shares the challenges in working with two-dimensional geometric structures and
accurately performing geometric computations.

Table 12-7. Computational geometry

Algorithm Best Average Worst Concepts Page

Convex Hull
Scan

n n log n n log n Greedy “Convex Hull Scan” on
page 250

LineSweep (n + k) log
n

(n + k) log
n

n2 Priority Queue,
Binary Tree

“LineSweep” on page
259

Voronoi
Diagram

n log n n log n n log n LineSweep,
Priority Queue,
Binary Tree

“Voronoi Diagram” on
page 268

Accept Approximate Solutions When Possible
In many circumstances, an approximate result is acceptable if it can be computed
much faster than an accurate result and it has a known error from the correct result.
The Knapsack unbounded problem provides such a scenario, since the approxima‐
tion is no worse than 50% of the actual result. These approximations can use ran‐
domness to compute an estimate of an actual answer, as we saw with the example
for counting the number of solutions to the N-Queens Problem. Use this approach
when you know that repeated trials increase the precision of the estimate.

A Bloom Filter is carefully designed so it can return false positives, but never false
negatives, when searching for an element in a collection. At first glance, it may seem
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useless to have an algorithm that returns an incorrect answer. But a Bloom Filter
can dramatically reduce the execution time of searching algorithms involving sec‐
ondary storage or database systems. When it returns negative, it truly means the
element does not exist in the collection, so there is no need to pursue a more costly
search. Of course, it might mean that sometimes the Bloom Filter allows a search to
continue that will fail, but this won’t affect the correctness of the overall application.

Add Parallelism to Increase Performance
The algorithms presented in this book compute their results assuming a single,
sequential computer. If you can identify subproblems that can be independently
computed, you might be able to design a multithreaded solution using the available
resources provided by modern computers. For instance, Chapter 11 showed how to
parallelize Quicksort to achieve a nice speedup. What other algorithms in this book
can benefit from parallelism? Recall that Convex Hull Scan has a sorting substep
followed by two independent problems: constructing the lower partial hull and
and the upper partial hull. Each of these tasks can be parallelized to achieve
improved performance. Table 12-8 shows the impressive speedup (review the
algs.model.problems.convexhull.parallel code in the repository). Despite the
impressive performance, the algorithm still performs in O(n log n) time, although
with better constants.

Table 12-8. Performance improvements of multithreaded Convex Hull Scan

n single-threaded 1 helper thread 2 helpers 3 helpers 4 helpers

2,048 0.8571 0.5000 0.6633 0.5204 0.6020

4,096 1.5204 0.7041 0.7041 0.7755 0.7857

8,192 3.3163 0.9592 1.0306 1.0306 1.0816

16,384 7.3776 1.6327 1.6327 1.5612 1.6939

32,768 16.3673 3.0612 2.8980 2.9694 3.1122

65,536 37.1633 5.8980 6.0102 6.0306 6.0408

131,072 94.2653 13.8061 14.3776 14.1020 14.5612

262,144 293.2245 37.0102 37.5204 37.5408 38.2143

524,288 801.7347 90.7449 92.1939 91.1633 91.9592

1,048,576 1890.5612 197.4592 198.6939 198.0306 200.5612

Most serial algorithms cannot achieve theoretic maximal speedup because only part
of the algorithm can be parallelized among multiple threads; this is known as
Amdahl’s law. Don’t try to use as many threads as possible in a solution. Adding
multiple helper threads requires more complicated programs than adding a single
helper thread. So with only a small increase in complexity, using a single helper
thread can provide noticeable improvement.
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However, not every algorithm can be improved with parallelism. In the k-d tree
Nearest Neighbor, for example, there may be double recursions as the algorithm
seeks to find the closest point in the collection to a target point. Parallelizing these
separate method invocations will slow down the overall performance because of the
need to synchronize these helper threads so they both complete together.
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A
Benchmarking

Each algorithm in this book is accompanied by data about its performance. Because
it’s important to use the right benchmarks to get accurate performance, we present
our infrastructure to evaluate algorithm performance in this appendix. This should
also help to address any questions or doubts you might have concerning the validity
of our approach. We try to explain the precise means by which empirical data is
computed, in order to enable you both to verify that the results are accurate and to
understand where the assumptions are appropriate given the context in which the
algorithm is intended to be used.

There are numerous ways by which algorithms can be analyzed. Chapter 2 presen‐
ted a theoretical, formal treatment, introducing the concepts of worst-case and
average-case analysis. These theoretic results can be empirically evaluated in some
cases, but not all. For example, consider evaluating the performance of an algorithm
to sort 20 numbers. There are 2.43*1018 permutations of these 20 numbers, and we
cannot simply exhaustively evaluate each of these permutations to compute the
average case. Additionally, we cannot compute the average by measuring the time to
sort all of these permutations. We must rely on statistical measures to assure our‐
selves we have properly computed the expected performance time of the algorithm.

Statistical Foundation
This chapter focuses on essential points for evaluating the performance of algo‐
rithms. Interested readers should consult any of the large number of available text‐
books on statistics for more information on the relevant statistical information used
to produce the empirical measurements in this book.

To compute the performance of an algorithm, we construct a suite of T independent
trials for which the algorithm is executed. Each trial is intended to execute an algo‐
rithm on an input problem of size n. Some effort is made to ensure these trials are
all reasonably equivalent for the algorithm. When the trials are actually identical, the
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intent of the trial is to quantify the variance of the underlying implementation of the
algorithm. This may be suitable, for example, if it is too costly to compute a large
number of independent equivalent trials.

The suite is executed and millisecond-level timings are taken before and after the
observable behavior. When the code is written in Java, the system garbage collector
is invoked immediately prior to launching the trial; although this effort can’t guar‐
antee that the garbage collector does not execute during the trial, it may reduce this
risk of spending extra time unrelated to the algorithm. From the full set of T recor‐
ded times, the best and worst performing times are discarded as being “outliers.”
The remaining T − 2 time records are averaged, and a standard deviation is compu‐
ted using the following formula:

σ =
∑
i

xi − x 2

n − 1

where xi is the time for an individual trial and x is the average of the T − 2 trials.
Note here that n is equal to T − 2, so the denominator within the square root is
T − 3. Calculating averages and standard deviations will help predict future perfor‐
mance, based on Table A-1, which shows the probability (between 0 and 1) that the
actual value will be within the range [x – k*σ, x + k*σ], where σ represents the stan‐
dard deviation computed in the equation just shown. The probability values become
confidence intervals that declare the confidence we have in a prediction.

Table A-1. Standard deviation table

k Probability

1 0.6827

2 0.9545

3 0.9973

4 0.9999

5 1

For example, in a randomized trial, it is expected that 68.27% of the time the result
will fall within the range [x–σ, x+σ].

When reporting results, we never present numbers with greater than four decimal
digits of accuracy, so we don’t give the mistaken impression that we believe the
accuracy of our numbers extends any farther. This process will convert a computa‐
tion such as 16.897986 into the reported number 16.8980.
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Example
Assume we wanted to benchmark the addition of the numbers from 1 to n. An
experiment is designed to measure the times for n = 8,000,000 to n = 16,000,000 in
increments of two million. Because the problem is identical for n and doesn’t vary,
we execute for 30 trials to eliminate as much variability as possible.

The hypothesis is that the time to complete the sum will vary directly in relation to
n. We show three programs that solve this problem—in Java, C, and Python—and
present the benchmark infrastructure by showing how it is used.

Java Benchmarking Solutions
On Java test cases, the current system time (in milliseconds) is determined immedi‐
ately prior to, and after, the execution of interest. The code in Example A-1 meas‐
ures the time it takes to complete the task. In a perfect computer, the 30 trials
should all require exactly the same amount of time. Of course, this is unlikely to
happen, because modern operating systems have numerous background processing
tasks that share the same CPU on which the performance code executes.

Example A-1. Java example to time execution of task

public class Main {
  public static void main (String[] args) {
    TrialSuite ts = new TrialSuite();
    for (long len = 8000000; len <= 16000000; len += 2000000) {
      for (int i = 0; i < 30; i++) {
        System.gc();
        long now = System.currentTimeMillis();

        /** Task to be timed. */
        long sum = 0;
        for (int x = 1; x <= len; x++) {
          sum += x;
        }

        long end = System.currentTimeMillis();
        ts.addTrial(len, now, end);
      }
    }
    System.out.println (ts.computeTable());
  }
}

The TrialSuite class stores trials by their size. After all the trials have been added
to the suite, the resulting table is computed. To do this, the running times are added
together to find the total sum, minimum value, and maximum value. As described
earlier, the minimum and maximum values are removed from the set when comput‐
ing the average and standard deviation.
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Linux Benchmarking Solutions
For C test cases, we developed a benchmarking library to be linked with the code to
test. In this section, we briefly describe the essential aspects of the timing code and
refer the interested reader to the code repository for the full source.

Primarily created for testing sort routines, the C-based infrastructure can be linked
to existing source code. The timing API takes over responsibility for parsing the
command-line arguments:

usage: timing [-n NumElements] [-s seed] [-v] [OriginalArguments]
   -n declares the problem size         [default: 100,000]
   -v verbose output                    [default: false]
   -s # set the seed for random values  [default: no seed]
   -h print usage information

The timing library assumes a problem will be attempted whose input size is defined
by the [-n] flag. To produce repeatable trials, the random seed can be set with
[-s seed]. To link with the timing library, a test case provides the following func‐
tions:

void problemUsage()

Report to the console the set of [OriginalArguments] supported by the spe‐
cific code. Note that the timing library parses the declared timing parameters,
and remaining arguments are passed along to the prepareInput function.

void prepareInput (int size, int argc, char **argv)
For some problems, this function is responsible for building the input set to be
processed within the execute method. Note that this information is not passed
directly to execute via a formal argument, but instead is stored as a static vari‐
able within the test case.

void postInputProcessing()
If any validation is needed after the input problem is solved, that code can exe‐
cute here.

void execute()
This method contains the body of code to be timed. Because the code is run
once as part of the evaluation time, it can have a small impact on the reported
time. When the execute method is empty, the overhead is considered to have
no impact on the overall reporting.

The test case in Example A-2 shows the code task for the addition example.

Example A-2. Task describing addition of n numbers

extern int numElements;     /* size of n */
void problemUsage() { /* none */ }
void prepareInput() { /* none */ }
void postInputProcessing() { /* None */ }
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void execute() {
  int x;
  long sum = 0;
  for (x = 1; x <= numElements; x++) { sum += x; }
}

Each execution of the C function corresponds to a single trial, so we have a set of
shell scripts to repeatedly execute the code being tested to generate statistics. For
each suite, a configuration file name config.rc is created to represent the trial suite
run. Example A-3 shows the file for the value-based sorting used in Chapter 4.

Example A-3. Sample configuration file to compare sort executions

# configure to use these BINS
BINS=./Insertion ./Qsort_2_6_11 ./Qsort_2_6_6 ./Qsort_straight

# configure suite
TRIALS=10
LOW=1
HIGH=16384
INCREMENT=*2

This specification file declares that the set of executables will be three variations of
QuickSort with one Insertion Sort. The suite consists of problem sizes ranging
from n = 1 to n = 16,384, where n doubles after each run. For each problem size, 10
trials are executed. The best and worst performers are discarded, and the resulting
generated table will have the averages (and standard deviations) of the remaining
eight trials.

Example A-4 contains the compare.sh script that generates an aggregate set of infor‐
mation for a particular problem size n.

Example A-4. compare.sh benchmarking script

#!/bin/bash
#
#  This script expects TWO arguments:
#     $1  -- size of problem n
#     $2  -- number of trials to execute
#  This script reads its parameters from the $CONFIG configuration file
#    BINS    set of executables to execute
#    EXTRAS  extra command line arguments to use when executing them
#
#  CODE is set to directory where these scripts are to be found
CODE=`dirname $0`

SIZE=20
NUM_TRIALS=10
if [ $# -ge 1 ]

Example | 359



then
  SIZE=$1
  NUM_TRIALS=$2
fi

if [ "x$CONFIG" = "x" ]
then
  echo "No Configuration file (\$CONFIG) defined"
  exit 1
fi

if [ "x$BINS" = "x" ]
then
  if [ -f $CONFIG ]
  then
     BINS=`grep "BINS=" $CONFIG | cut -f2- -d'='`
   EXTRAS=`grep "EXTRAS=" $CONFIG | cut -f2- -d'='`
  fi

  if [ "x$BINS" = "x" ]
  then
     echo "no \$BINS variable and no $CONFIG configuration "
     echo "Set \$BINS to a space-separated set of executables"
  fi
fi

echo "Report: $BINS on size $SIZE"
echo "Date: `date`"
echo "Host: `hostname`"
RESULTS=/tmp/compare.$$
for b in $BINS
do
  TRIALS=$NUM_TRIALS

  # start with number of trials followed by totals (one per line)
  echo $NUM_TRIALS > $RESULTS
  while [ $TRIALS -ge 1 ] do
    $b -n $SIZE -s $TRIALS $EXTRAS | grep secs | sed 's/secs//' >> $RESULTS
    TRIALS=$((TRIALS-1))
  done

  # compute average/stdev
  RES=`cat $RESULTS | $CODE/eval`
  echo "$b $RES"
  rm -f $RESULTS
done

compare.sh makes use of a small C program, eval, that computes the average and
standard deviation using the method described at the start of this chapter. This com‐
pare.sh script is repeatedly executed by a manager script, suiteRun.sh, which iterates
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over the desired input problem sizes specified within the config.rc file, as shown in
Example A-5.

Example A-5. suiteRun.sh benchmarking script

#!/bin/bash
CODE=`dirname $0`

# if no args then use default config file, otherwise expect it
if [ $# -eq 0 ]
then
  CONFIG="config.rc"
else
  CONFIG=$1
  echo "Using configuration file $CONFIG..."
fi

# export so it will be picked up by compare.sh
export CONFIG

# pull out information
if [ -f $CONFIG ]
then
   BINS=`grep "BINS=" $CONFIG | cut -f2- -d'='`
   TRIALS=`grep "TRIALS=" $CONFIG | cut -f2- -d'='`
   LOW=`grep "LOW=" $CONFIG | cut -f2- -d'='`
   HIGH=`grep "HIGH=" $CONFIG | cut -f2- -d'='`
   INCREMENT=`grep "INCREMENT=" $CONFIG | cut -f2- -d'='`
else
  echo "Configuration file ($CONFIG) unable to be found."
  exit −1
fi

# headers
HB=`echo $BINS | tr ' ' ','`
echo "n,$HB"

# compare trials on sizes from LOW through HIGH
SIZE=$LOW
REPORT=/tmp/Report.$$
while [ $SIZE -le $HIGH ]
do
  # one per $BINS entry
  $CODE/compare.sh $SIZE $TRIALS | awk 'BEGIN{p=0} \
      {if(p) { print $0; }} \
      /Host:/{p=1}' | cut -d' ' -f2 > $REPORT

  # concatenate with, all entries ONLY the average. The stdev is
  # going to be ignored
  # ------------------------------
  VALS=`awk 'BEGIN{s=""}\
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      {s = s "," $0 }\
      END{print s;}' $REPORT`
  rm -f $REPORT

  echo $SIZE $VALS

  # $INCREMENT can be "+ NUM" or "* NUM", it works in both cases.
  SIZE=$(($SIZE$INCREMENT))
done

Python Benchmarking Solutions
The Python code in Example A-6 measures the performance of computing the addi‐
tion problem. It uses the timeit module, a standard for measuring the execution
time of Python code fragments and entire programs.

Example A-6. Python example to time execution of task

import timeit

def performance():
  """Demonstrate execution performance."""
  n = 8000000
  numTrials = 10
  print ("n", "Add time")
  while n <= 16000000:
    setup = 'total=0'
    code  = 'for i in range(' + str(n) + '): total += i'
    add_total = min(timeit.Timer(code, setup=setup).repeat(5,numTrials))

    print ("%d %5.4f " % (n, add_total ))
    n += 2000000

if __name__ == '__main__':
  performance()

The timeit module returns a list of values reflecting the execution time in seconds
of the code fragment. By applying min to this list, we extract the best performance of
any of these trials. The timeit module documentation explains the benefits of using
this approach to benchmark Python programs.

Reporting
It is instructive to review the actual results of the performance of three different
implementations (in different programming languages) of the same program when
computed on the same platform. We present three tables (Table A-2, Table A-4, and
Table A-5), one each for Java, C, and Python. In each table, we present the millisec‐
ond results and a brief histogram table for the Java results.
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Table A-2. Timing results of computations in Java

n average min max stdev

8,000,000 7.0357 7 12 0.189

10,000,000 8.8571 8 42 0.5245

12,000,000 10.5357 10 11 0.5079

14,000,000 12.4643 12 14 0.6372

16,000,000 14.2857 13 17 0.5998

The aggregate behavior of Table A-2 is shown in detail as a histogram in Table A-3.
We omit from the table rows that have only zero values; all nonzero values are sha‐
ded in the table.

Table A-3. Individual breakdowns of timing results

time (ms) 8,000,000 10,000,000 12,000,000 14,000,000 16,000,000

7 28 0 0 0 0

8 1 7 0 0 0

9 0 20 0 0 0

10 0 2 14 0 0

11 0 0 16 0 0

12 1 0 0 18 0

13 0 0 0 9 1

14 0 0 0 3 22

15 0 0 0 0 4

16 0 0 0 0 2

17 0 0 0 0 1

42 0 1 0 0 0

To interpret these results for Java, we turn to statistics, referring to the confidence
intervals described earlier. We assume the timing of each trial is independent. If we
are asked to predict the performance of a proposed run for n = 12,000,000, observe
that its average performance, x, is 12.619 and the standard deviation, σ, is 0.282.
Consider the range of values [x – 2*σ, x + 2*σ], which covers values that are plus or
minus two standard deviations from the average. As you can see from Table A-1, the
probability of being in this range of [9.5199, 11.5515] is 95.45%.
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Table A-4. Timing results (in milliseconds) of computations in C

n average min max stdev

8,000,000 8.376 7.932 8.697 .213

10,000,000 10.539 9.850 10.990 .202

12,000,000 12.619 11.732 13.305 .282

14,000,000 14.681 13.860 15.451 .381

16,000,000 16.746 15.746 17.560 .373

A few years ago, there would have been noticeable differences in the execution
times of these three programs. Improvements in language implementations (espe‐
cially just-in-time compilation) and computing hardware allows them to converge
on pretty much the same performance for this specific computation. The histogram
results are not as informative, because the timing results include fractional millisec‐
onds, whereas the Java timing strategy reports only integer values. Comparing
more realistic programs would show greater differences between the programming
languages.

Table A-5. Timing results of computations in Python

n Execution time (ms)

8,000,000 7.9386

10,000,000 9.9619

12,000,000 12.0528

14,000,000 14.0182

16,000,000 15.8646

Precision
Instead of using millisecond-level timers, we could use nanosecond timers. On the
Java platform, the only change in the earlier timing code would be to invoke
System.nanoTime() instead of accessing the milliseconds. To understand whether
there is any correlation between the millisecond and nanosecond timers, we
changed the code to that shown in Example A-7.

Example A-7. Using nanosecond timers in Java

TrialSuite tsM = new TrialSuite();
TrialSuite tsN = new TrialSuite();
for (long len = 8000000; len <= 16000000; len += 2000000) {
    for (int i = 0; i < 30; i++) {
        long nowM = System.currentTimeMillis();
        long nowN = System.nanoTime();
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        long sum = 0;
        for (int x = 1; x <= len; x++) { sum += x; }
        long endM = System.currentTimeMillis();
        long endN = System.nanoTime();
        tsM.addTrial(len, nowM, endM);
        tsN.addTrial(len, nowN, endN);
    }
}
System.out.println (tsM.computeTable());
System.out.println (tsN.computeTable());

Table A-2, shown earlier, contains the millisecond results of the timings, whereas
Table A-6 contains the results when using the nanosecond timer in C, and Table A-7
shows the Java performance. For these computations, the results are quite accurate.
Because we don’t find that using nanosecond-level timers adds much extra precision
or accuracy, we continue to use millisecond-level timing results within the bench‐
mark results reported in the algorithm chapters. We also continue to use millisec‐
onds to avoid giving the impression that our timers are more accurate than they
really are. Finally, nanosecond timers on Unix systems are not yet standardized,
and there are times when we wanted to compare execution times across platforms,
which is another reason we chose to use millisecond-level timers throughout
this book.

Table A-6. Results using nanosecond timers in C

n average min max stdev

8,000,000 6970676 6937103 14799912 20067.5194

10,000,000 8698703 8631108 8760575 22965.5895

12,000,000 10430000 10340060 10517088 33381.1922

14,000,000 12180000 12096029 12226502 27509.5704

16,000,000 13940000 13899521 14208708 27205.4481

Table A-7. Results using nanosecond timers in Java

n average min max stdev

8,000,000 6961055 6925193 14672632 15256.9936

10,000,000 8697874 8639608 8752672 26105.1020

12,000,000 10438429 10375079 10560557 31481.9204

14,000,000 12219324 12141195 12532792 91837.0132

16,000,000 13998684 13862725 14285963 124900.6866
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collision detection, 283, 285, 305
intersection queries, 283, 285
k-d trees, 285
Nearest Neighbor algorithm, 283-285,

288-298
Octree, 311
overview of, 348
quadtrees, 286, 305-311
R-trees, 287, 311-322
range queries, 283, 305, 312
Range Query algorithm, 298-304

speedup factor, 335
state

evaluating, 191
hierarchical versus flat, 211
managing, 191
representing, 173

static evaluation functions, 172
string benchmark results, 85

T
templates

algorithm format, 35
example, 42-46
pseudocode format, 36

Tic-tac-toe, 169-189
Transportation problem, 217, 240
transposition sorting, 57-60
transposition tables, 211
Transshipment problem, 217, 239
travel planning, 259

(see also LineSweep algorith)
Traveling Salesman Problem, 158
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Colophon
The animal on the cover of Algorithms in a Nutshell is a hermit crab (Pagurus bern‐
hardus). More than 500 species of hermit crabs exist. Mostly aquatic, they live in
saltwater in shallow coral reefs and tide pools. Some hermit crabs, however, espe‐
cially in the tropics, are terrestrial. The robber crab, which can grow as large as a
coconut, is one such example. Even terrestrial hermit crabs carry a small amount of
water in their shells to help them breathe and keep their abdomens moist.

Unlike true crabs, hermit crabs do not have a hard shell of their own and must seek
refuge from predators in the abandoned shells of gastropods (snails). They are par‐
ticularly fond of the discarded shells of periwinkles and whelks. As they grow big‐
ger, they have to find a new shell to inhabit. Leaving any part of themselves exposed
would make them more susceptible to predators; in addition, not having a well-



fitted shell stunts their growth. Because intact gastropod shells are limited, shell
competition is an issue.

Hermit crabs are decapod (which literally means “ten footed”) crustaceans. Of their
five pairs of legs, the first two are pincers, or grasping claws, the larger one of which
they use to defend themselves and shred food. The smaller claw is used for eating.
The second and third pairs of legs help them walk, and the final two pairs help keep
them in their shells.

Characteristic of crustaceans, hermit crabs do not have an internal skeleton
but rather a hard exoskeleton of calcium. They also have two compound eyes, two
pairs of antennae (which they use to sense smells and vibration), and three pairs of
mouthparts. Near the base of their antennae is a pair of green glands that excretes
waste.

Sea anemones (water-dwelling, predatory animals) are often found attached to her‐
mit crabs’ shells. In exchange for transportation and a helping of the hermit crab’s
leftovers, sea anemones help to ward off the hermit crab’s marine predators, such as
fish and octopus. Other predators include birds, other crabs, and some mammals
(man included).

Known as the “garbage collectors of the sea,” hermit crabs will eat mostly anything,
including dead and rotting material on the seashore, and thus they play an impor‐
tant role in seashore cleanup. As omnivores, their diet is varied and includes every‐
thing from worms to organic debris, such as grass and leaves.

The cover image is from Johnson’s Library of Natural History, Volume 2. The cover
font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font is
Adobe Myriad Condensed; and the code font is LucasFont’s TheSansMonoCon‐
densed.
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